

9101 Handheld Spectrum Analyzer

User's guide
Version 4.50

boosting wireless efficiency

Notice	Every effort was made to ensure that the information in this document was accurate at the time of printing. However, information is subject to change without notice, and Willtek reserves the right to provide an addendum to this document with information not available at the time this document was created.
Copyright	© Copyright 2006 Willtek Communications GmbH. All rights reserved. Willtek and its logo are trademarks of Willtek Communications. All other trademarks and registered trademarks are the property of their respective owners. No part of this guide may be reproduced or transmitted electronically or otherwise without written permission of the publisher.
Trademarks	Willtek is a trademark of Willtek Communications GmbH in Germany and other countries. Specifications, terms and conditions are subject to change without notice. All trademarks and registered trademarks are the property of their respective companies.
Ordering information	This guide is issued as part of the 9101 Handheld Spectrum Analyzer . The order number for a published guide is 290 004. The following table shows the order numbers for the 9101 Handheld Spectrum Analyzer Product Packages. For details on the scope of delivery for the individual editions please refer to your getting started manual.

Table 1 Editions of the 9101 Handheld Spectrum Analyzer

Order number	Description
M 100 411	9101 Handheld Spectrum Analyzer Bench Edition
M 248 800	9101 Handheld Spectrum Analyzer Field Edition

Table of Contents

About This Guide		xi
	Purpose and scope	xii
	Assumptions	xii
	Related information	xii
	Technical assistance	xii
	Conventions	xiii
 Safety Notes		xv
	Safety warnings	xvi
 Chapter 1	Overview	1
	About the 9101 Handheld Spectrum Analyzer	2
	What's new	2
	Version 4.50.....	2
	Version 4.11.....	2
	Version 4.10.....	2
	Version 4.01.....	2
	New in version 3.00.....	3
	New in version 2.21.....	4
	New in version 2.20.....	4
	New in version 2.10.....	4
	New in version 1.54.....	5
	Features and capabilities.....	5
	Options and accessories.....	5
	Physical description	6
	Maintaining your unit	7
 Chapter 2	General Operation	9
	Connecting the 9101 Handheld Spectrum Analyzer	10

DC IN connector	10
RF IN connector	10
EXT. TRIG. connector	11
SERIAL (RS-232) connector	11
LAN connector	12
Powering up the unit	12
Starting measurements	12
Using the front panel	12
Overview	12
Battery status LED	13
Display	13
Results area	14
Trace finder	17
Marker field	17
Input field	17
Softkey descriptions	17
Keypad	18
Function keys	18
Cursor keys	19
Numeric keys	20
Enter keys	20
Escape key	20
Backspace key	21
Softkeys	21
Entering numbers and text	22
Filling in a numerical input field	22
Filling in a text input field	23
Changing the input	23
Selecting the measurement mode	24
Working with the markers	25
Enabling and moving a marker	25
Disabling a marker	26
Enabling a delta marker	26
Disabling a delta marker	26
Setting a marker on a frequency relative to marker 1	27
Changing the center frequency with a marker	27
Changing the reference level with the marker	27
Assigning the marker frequency to FStep	27
Using limit lines	28
Overview	28
Using simple limits	29
Switching simple limits on and off	29
Defining upper and lower limits	29
Using limit templates	30
Selecting limit lines within the 9101	30
Activating and deactivating limit templates	30
Deleting limit files in the 9101	30
Counting limit failures	31
Resetting the counter	31
Enabling a beep upon failures	31
Viewing a failed measurement	31
Printing	32
Controlling the 9101 from a PC	32
Returning from remote control to local mode	32

Checking general settings	32
Reading the serial number.....	32
Reading the software version number	33
Reviewing the calibration	33
Checking installed options.....	34
Installing a new option.....	35
Changing the display brightness	35
Enabling and disabling beeps	36
Assigning a device name to the instrument	36
Adjusting date and time in the instrument.....	36
Changing the baud rate on the RS-232 port	37
Changing the IP address of the 9101	38
Changing the IP address of the PC	39
Changing the IP port used by the 9101	40
Configuring a printer	41
Selecting user interface colors.....	41
Working with stored settings.....	43
Storing settings on the 9101.....	43
Using previously stored settings.....	44
Restoring factory settings for all modes	44

Chapter 3	Spectrum Analysis Operation	45
	Selecting the measurement mode.....	46
	Changing the frequency settings.....	46
	Setting start and stop frequency	47
	Setting center frequency and span	47
	Changing the main menu for different frequency parameters.....	47
	Viewing the complete frequency band.....	48
	Performing measurements in the time domain	48
	Selecting the step size for the frequency input.....	48
	Selecting RBW, VBW and SWT.....	49
	Setting up the level parameters.....	49
	Setting the reference level	50
	Setting the hardware attenuation.....	50
	Changing the vertical scale.....	50
	Selecting the level unit for input and output.....	51
	Compensating gains and losses	51
	Enabling external device compensation.....	51
	Turning external device compensation off.....	51
	Deleting files for external device compensation	52
	Changing the input impedance	52
	Applying special functions on the signal.....	53
	Using a trigger	53
	Performing a limited number of measurements.....	55
	Demodulating an AM or FM signal	55
	Setting up the trace	56
	Selecting the trace mode.....	56
	Turning the second trace on and off.....	59
	Subtracting trace B from trace A.....	59
	Adding trace B to trace A	60
	Defining the number of measurements for averaging	61
	Selecting the detection method.....	61

Copying traces inside the 9101	62
Storing and loading traces	63
Storing a trace	63
Reusing a trace name	64
Reloading a trace	64
Deleting a trace	64
Deleting all traces	64
Storing and loading instrument settings	65
Special measurement functions	65
Channel power	65
Adjacent channel power ratio (ACPR)	66
Occupied bandwidth (OBW)	66
Selecting the measurement type	67
Switching special measurement functions off	67
Changing the channel width	68
Changing the channel spacing	68
Reading the channel power	68
Changing the occupied bandwidth percentage	68
Changing general analyzer parameters	69
Viewing the spectrum analysis mode parameters	69

Chapter 4	Channel Power Operation	71
	About the channel power mode	72
	Channel power	73
	Adjacent channel power ratio (ACPR)	74
	Occupied bandwidth (OBW)	74
	Selecting the measurement mode	75
	Operating in channel power mode	76
	Reading the channel power	77
	Changing the occupied bandwidth percentage	77
	Working with communication systems and frequency settings	77
	Selecting a communication system on the 9101	77
	Setting up a new communication system	78
	Deleting a communication system	79
	Deleting all communication systems	79
	Undeleting default communication systems	79
	Using the 9100 Data Exchange Software with communication systems	79
	Defining the frequency span	80
	Changing the channel	80
	Changing the sweep time	80
	Setting up the level parameters	80
	Setting the reference level	81
	Setting the hardware attenuation	81
	Changing the vertical scale	82
	Selecting the level unit for input and output	82
	Compensating gains and losses	82
	Enabling external device compensation	82
	Turning external device compensation off	83
	Deleting files for external device compensation	83
	Changing the input impedance	83
	Setting up the trace	84
	Selecting the trace mode	84

Turning the second trace on and off.....	86	
Subtracting trace B from trace A.....	86	
Adding trace B to trace A	87	
Defining the number of measurements for averaging	87	
Selecting the detection method.....	87	
Copying traces inside the 9101	88	
Storing and loading traces	89	
Storing a trace	89	
Reusing a trace name.....	90	
Reloading a trace.....	90	
Deleting a trace	90	
Deleting all traces	90	
Storing and loading instrument settings.....	91	
Viewing the channel power mode parameters.....	91	
<hr/>		
Chapter 5	Troubleshooting	93
	Handling system errors.....	94
<hr/>		
Chapter 6	Updating the Instrument Software	95
	Entering the Setup Application Software menu.....	96
	Setting a password	96
	Performing a serial update	97
	Performing a LAN update.....	99
	Determining the Host IP address.....	100
<hr/>		
Chapter 7	SCPI Command Reference	101
	Overview	102
	General commands	102
	Commands affecting the event status register.....	104
	Commands affecting the service register.....	105
	System commands.....	108
	Sense commands.....	114
	Input commands	128
	MMemory commands.....	130
	Instrument commands	141
	fDisplay commands.....	142
	Calculate commands.....	146
	Format commands.....	153
	Service commands.....	154
	SCPI errors.....	158
<hr/>		
Chapter 8	9100 Data Exchange Software	161
	About the 9100 Data Exchange Software	162
	Installation requirements.....	162
	Understanding the license conditions	162
	Installing the software.....	162
	Starting the software	163
	Connecting the PC to the 9101	164

Using a predefined configuration for the connection.....	164
Serial interface connection.....	164
LAN (TCP/IP) connection	165
Saving the configuration.....	165
Loading measurement results from the 9101.....	165
Viewing the actual trace on the PC	166
Toggling the view mode.....	166
Showing and hiding parameters	166
Showing and hiding markers	167
Continually loading live traces.....	167
Transferring a saved trace to the PC.....	168
Saving, loading and printing results on the PC	169
Storing results on the PC.....	169
Loading a trace file on the PC	169
Printing measurement results.....	169
Saving results to a graphics file.....	170
Saving results to a text file.....	170
Creating screen shots.....	171
Working with measurement results	172
Adding markers	172
Change the reference level and scale.....	173
Using a grid.....	173
Entering text.....	174
Defining and loading limit templates.....	174
Defining limits	175
Changing limit lines	175
Displaying an example trace in the Limits Editing menu.....	176
Storing a template on the PC.....	176
Loading a template from the PC	176
Transferring a template to the 9101.....	176
Defining and loading external coupling parameters.....	178
Defining the external coupling factor	178
Loading an external coupling loss file to the 9101	179
Managing communication systems for channel power measurements.....	179
Editing communication system parameters on the PC.....	179
Working with settings	180
Exchanging a settings file between 9101 and PC	180
Changing 9101 settings on the PC	180
Managing files on the PC and on the 9101.....	181
File types and directory structure	181
Starting the File Manager.....	182
Copying configuration files from the 9101 to the PC.....	183
Deleting files.....	183
Chapter 9	
Programming Examples	185
Overview	186
Command examples	186
Introduction	186
Prerequisites	186
Over serial interface	186
Over LAN interface	186

Settings	186	
Center frequency	186	
Span	187	
Resolution bandwidth	187	
Video bandwidth	187	
Sweep time	188	
Reference level	188	
Scale	188	
Input attenuation	188	
Detector	189	
Trace	189	
Marker	189	
Measurements	190	
Trace	190	
Sweep	190	
Max Peak	191	
Next Peak	191	
Marker level	191	
Marker frequency	191	
Others	192	
Identity	192	
Reset	192	
Error queue	192	
Echo	192	
Local mode	193	
Application examples	194	
Signal monitoring	194	
Signal search	195	
<hr/> Appendix A	Index of SCPI Commands	197
<hr/> Appendix B	Predefined settings	201
	Predefined measurement settings	202
	Predefined channel power communication systems	203
	Preinstalled systems on the 9101	203
	Predefined systems in the 9100 Data Exchange Software	204
	Predefined cable types	206
<hr/> Appendix C	Menu Structure	211
	Mode function key menus	212
	Application menus	213
<hr/> Appendix D	Software License	215
	End-user license agreement	216

Appendix E	Warranty and Repair	217
	Warranty information.....	218
	Equipment return instructions.....	219
Publication History		229

About This Guide

- “Purpose and scope” on page xii
- “Assumptions” on page xii
- “Related information” on page xii
- “Technical assistance” on page xii
- “Conventions” on page xiii

Purpose and scope

The purpose of this guide is to help you successfully use the 9101 Handheld Spectrum Analyzer features and capabilities. This guide includes task-based instructions that describe how to install, configure, use, and troubleshoot the 9101 Handheld Spectrum Analyzer. Additionally, this guide provides a description of Willtek's warranty, services, license, and repair information as well as the software license agreement.

Assumptions

This guide is intended for novice and intermediate users who want to use the 9101 Handheld Spectrum Analyzer effectively and efficiently. We are assuming that you are familiar with basic telecommunication concepts and terminology.

Related information

Use this guide in conjunction with the following information:

Willtek 9100 Handheld Spectrum Analyzer Series: getting started manual, order number M 295 204

Willtek 9100 Handheld Spectrum Analyzer Series: applications guide, M 290 504

Willtek also offers a glossary on "Spectrum and network analysis" terms. The order number is SPEC/CT812/0105/EN.

Technical assistance

If you need assistance or have questions related to the use of this product, call one of Willtek's technical assistance centers. You can also contact Willtek by e-mail at customer.support@willtek.com.

Table 1 Technical assistance centers

Region	Phone number	Fax number
Europe, Middle East, Asia, Africa	+49 (0) 89 996 41 386	+49 (0) 89 996 41 440
Americas	+1 973 386 9696	+1 973 386 9191
China	+86 21 5836 6669	+86 21 5835 5238

Conventions

This guide uses naming conventions and symbols, as described in the following tables.

Table 2 Typographical conventions

Description	Example
User interface actions appear in this typeface .	On the Status bar, click Start .
Buttons or switches that you press on a unit appear in this TYPEFACE .	Press the ON switch.
Code and output messages appear in this typeface .	All results okay
Text you must type exactly as shown appears in this typeface .	Type: a:\set.exe in the dialog box.
Variables appear in this <typeface> .	Type the new <hostname> .
Book references appear in this typeface .	Refer to Newton's Telecom Dictionary
A vertical bar means "or": only one option can appear in a single command.	platform [a b e]
Square brackets [] indicate an optional argument.	login [platform name]
Slanted brackets < > group required arguments.	<password>

Table 3 Keyboard and menu conventions

Description	Example
A plus sign + indicates simultaneous keystrokes.	Press Ctrl+s
A comma indicates consecutive keystrokes.	Press Alt+f,s
A slanted bracket indicates choosing a submenu from menu.	On the menu bar, click Start > Program Files .

Table 4 Symbol conventions

	This symbol represents a general hazard.
	This symbol represents a risk of electrical shock.
	NOTE This symbol represents a note indicating related information or tip.

Safety Notes

This chapter provides the safety notes for the 9101 Handheld Spectrum Analyzer.

Safety warnings

This product is designed for indoor use. As exposure to water can damage the instrument it has to be protected against moisture when used outdoors.

WARNING

This is a safety class A equipment in accordance with EN 61326. It may produce radio interference affecting household equipment; the user may be forced to execute appropriate measures against radiation.

WARNING

Only use a 50Ω N-type connector to connect to the **RF IN** port of the 9101. Use of any other connector may result in damage of the instrument.

WARNING

Do not cover the ventilation slits (at the bottom left-hand corner and on the top). Covering them may result in serious damage and fire.

WARNING

The maximum input power level at the **RF IN** connector is 30 dBm (1 W). Higher input levels may result in serious damage of the instrument.

WARNING

Operate the instrument within the temperature range from 5°C (40°F) to 45°C (110°F) only. Operation outside this range will lead to invalid results.

Safety advice for the battery

Do not crush. Do not heat or incinerate. Do not short-circuit. Do not dismantle. Do not immerse in any liquid, it may vent or rupture! Do not charge below 0°C (32°F) nor above 45°C (110°F).

Battery usage

The battery is for use with the 9101 only. Willtek does not accept any liability for damage of the battery or other equipment if the battery is used with other electric or electronic equipment.

Overview

1

This chapter provides a general description of the 9101 Handheld Spectrum Analyzer. Topics discussed in this chapter include the following:

- ["About the 9101 Handheld Spectrum Analyzer" on page 2](#)
- ["What's new" on page 2](#)
- ["Features and capabilities" on page 5](#)
- ["Options and accessories" on page 5](#)
- ["Physical description" on page 6](#)
- ["Maintaining your unit" on page 7](#)

About the 9101 Handheld Spectrum Analyzer

The 9101 is a lightweight, full-featured spectrum analyzer for many applications:

- Used in mobile phone repair to detect and locate faulty mobile phone parts and components.
- Installation troubleshooting, repair and maintenance.
- Assessment and verification of electromagnetic radiation to verify against EMI.
- Production test and alignment of the output of RF modules.
- Field measurements and verification of base station emissions.
- Used to detect and locate faulty mobile phone parts and components.

Typical measurements with the 9101 Handheld Spectrum Analyzer include transmitter testing, alignment of modulators and measuring switch breakthrough. The analyzer is fully controllable via front panel or by remote control from a PC.

Measurement results and instrument settings can easily be transferred to a PC for presentation or post-processing. This rugged instrument is suitable for stationary and mobile usage and meets many application needs.

What's new

Version 4.50 Minor corrections.

Version 4.11 Improvements:

- Trace average function corrected.
- Too low sweep time at 200 kHz RBW now gets an UNCAL warning.

Version 4.10 New features:

- Supports 100 Hz and 300 Hz RBW filters, 10 kHz span and 250 s sweep time in 9101B and 9102B models. Those features are not available for older instruments.

Improvements:

- SCPI remote control bugfix for marker value.

Version 4.01 New features:

- New trace finder functionality.
For further details refer to "[Trace finder](#)" on page 19 in [Chapter 1 "Overview"](#).
- Marker functionality: six markers for all measurement modes, markers can be set on trace A and trace B.
- New look and feel of the parameter windows
- Direct printing
- New Printer Config menu
- RMS Option with RMS detector
- Frequency counter

Improvements:

- Full support of external device in the Mode window
- Improved frequency counter
- Improved Level StepDown functionality of MinValue
- Improved Color Scheme menu: eight input fields available for all screen components

New in version 3.00

New features:

- New Factory Settings function
For a description of this function refer to "[Restoring factory settings for all modes](#)" on page 44.
- New function in the Trace Function menu: Add A + B → A.
- New functions in the Trace Function menu: Subtract A - B → A and Add A + B → A.
For a description of these functions refer to the "[Setting up the trace](#)" sections of in [Chapter 3 "Spectrum Analysis Operation"](#) and [Chapter 4 "Channel Power Operation"](#).
- New Calibration Information menu
For a description of this menu refer to "[Reviewing the calibration](#)" on page 33.
- New password function for updating the instrument software
For a description of this function refer to "[Setting a password](#)" on page 96 in [Chapter 6 "Updating the Instrument Software"](#).

Improvements:

- Improved resolution bandwidth (RBW), down to 1 kHz/3 kHz
- Improved video bandwidth (VBW), down to 10 Hz/30 kHz
- Delta marker definition facilitated. Delta markers can be defined directly via the relevant marker softkey.
For a description of the new delta marker handling procedure refer to "[Working with the markers](#)" on page 25.
- Measure menu improved. Access to Measure menu from Spectrum Analysis main menu.

- System information menu improved to enhance handling.
For further information refer to "[Checking general settings](#)" on page 32.

NOTE

These features are available for serial numbers 5004001 and higher.

New in version 2.21 Improvements:

- Frequency offset corrected for small span (< 200 kHz) and long sweep time (> 5 s)
- Displayed battery charge corrected, automatic battery voltage check and automatic correction of battery load during startup process.
- Automatic switch off from video trigger to free run implemented, when span is changed from zero span to span \geq 100 kHz
- "Not loaded" will be displayed when no files (Limits, Channel settings) are loaded

New in version 2.20 New features:

- External device compensation
- Impedance selection 50/75 Ω
- Low battery alarm
- Parameter screens
- Copying between traces A and B
- Marker To FStep function
- Measurement types Channel Power/ACPR/OBW within Channel Power and Spectrum Analysis modes
- Permanent demodulation
- Limit settings file displayed
- Simple limits
- Traces and settings can be transferred to the instrument

Improvements:

- Dynamic frequency button handling changed
- Various System Information menus modified

New in version 2.10 Parameter menu for channel power and spectrum analyzer mode implemented

System menu with time and date added

Automatic sweep time calculation optimized for sweep times below 24 ms

Filter transient time improved for combination of 200 kHz span and 10 Hz video bandwidth so that measurement is calibrated

Rework of IP address input

New in version 1.54

- Redesigned user interface (colors, softkeys, graph)
- New menu structure
- AM/FM demodulation
- New frequency entry mode (Start/Span) (removed in version 2.20)
- Channel power measurement application selectable with measurement mode key
- Video trigger (positive, negative slope)
- Number of single sweeps selectable
- Limit lines (lines, fail count, fail beep, fail hold)
- Averaging
- Frequency step functionality with cursor keys
- New marker handling (absolute, relative, marker to highest peak)
- Sweep counter
- Battery management

Features and capabilities

- Comprehensive feature set in one-button measurement
- Easy-to-read screens make all the difference in finding signals
- Speedy assessment of signal quality with marker and limit template capabilities
- Get more out of digitally modulated signals through RMS channel power measurement functions
- Accurate measurements in different RF environments due to external device compensation and impedance adjustment
- Remote control via RS-232 and Ethernet

Options and accessories

The following options and accessories are available:

Table 5 Accessories for the 9101 Handheld Spectrum Analyzer

Order number	Description
M 248 640	1205 RF Probe 20 dB (includes N to BNC adapter)
M 205 012	Battery module (rechargeable, 7.2 Ah)
M 204 097	1500 battery charger
M 241 013	9100 soft carrying bag
M 241 015	9100 outdoor backpack
M 248 328	9100 power supply
M 860 389	9100 12 V car adapter
M 867 037	9100 safety lock
M 897 137	9100 Data Exchange Software
M 860 388	9100 serial communication cable
M 860 261	Antenna, 900 MHz band (TNC)
M 860 262	Antenna, 1800MHz band (TNC)
M 860 260	Antenna, 1880 MHz band (BNC)
M 860 146	Antenna, 2400 MHz band (TNC)
M 886 097	Adapter N (male) to BNC (female)
M 886 098	Adapter N (male) to TNC (female)
M 886 205	Matching pad N 50 Ω to N 75 Ω
M 886 204	Matching pad N 50 Ω to F 75 Ω
M 874 061	Attenuator 18 GHz, 6 dB

Physical description

The 9101 Handheld Spectrum Analyzer is delivered with the 9100 Data Exchange Software which can also be ordered separately.

The user-accessible parts of the 9101 can be broken down into several sections:

- Front panel with large screen, softkeys, numeric, cursor and function keys.
- Connectors accessible from the top and the left-hand side of the 9101.
- On/off switch, power supply connector and battery shelf.
- Handle which can be turned in steps to serve as a stand, allowing the 9101 to be operated at an angle.

Maintaining your unit

Willtek seeks to permanently improve its products. Software updates are available on the Internet at www.willtek.com. For a detailed description of updating the Application Software please refer to [Chapter 6 "Updating the Instrument Software"](#).

The 9101 Handheld Spectrum Analyzer is a measurement device. As with all such instruments, the 9101 should be calibrated on a regular basis to ensure accuracy. Willtek recommends calibration of the 9101 at yearly intervals.

Please take also advantage of our Frequently Asked Questions and our electronic newsletter, both available on the Internet.

Further questions regarding the 9101 Handheld Spectrum Analyzer can be directed to customer.support@willtek.com.

General Operation

2

This chapter describes the instrument's functions that are independent of the selected mode. Topics discussed in this chapter are as follows:

- ["Connecting the 9101 Handheld Spectrum Analyzer" on page 10](#)
- ["Powering up the unit" on page 12](#)
- ["Starting measurements" on page 12](#)
- ["Using the front panel" on page 12](#)
- ["Selecting the measurement mode" on page 24](#)
- ["Working with the markers" on page 25](#)
- ["Using limit lines" on page 28](#)
- ["Printing" on page 32](#)
- ["Controlling the 9101 from a PC" on page 32](#)
- ["Returning from remote control to local mode" on page 32](#)
- ["Checking general settings" on page 32](#)
- ["Working with stored settings" on page 43](#)
- ["Restoring factory settings for all modes" on page 44](#)

Connecting the 9101 Handheld Spectrum Analyzer

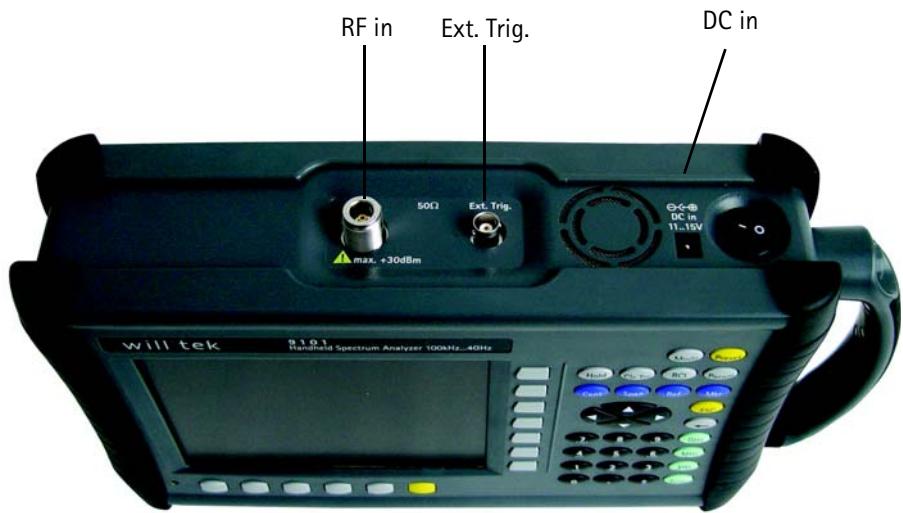


Figure 1 9101 connectors on the top of the instrument

DC IN connector

The 9101 can be operated either from the internal battery or from an external DC source such as the power supply which is delivered with the 9101. In addition, the battery is loaded when an external DC source is connected. See the specifications in your getting started manual for details of the required DC source. Here you will also find detailed information on installing and maintaining the battery.

Apply the source to the **DC IN** connector at the top of the 9101.

RF IN connector

RF in is a $50\ \Omega$ N-type connector (female).

If you have a $50\ \Omega$ shielded RF cable with an N-type connector (male) to connect to the device under test, simply screw the connector tightly to the 9101.

If you have a $50\ \Omega$ shielded RF cable with a BNC connector (male), use an N to BNC adapter to connect the cable to the 9101. Willtek offers an appropriate adapter; see section "[Options and accessories](#)" on page 5.

WARNING

The maximum allowable input power level at the **RF IN** connector is 30 dBm (1 W). Higher levels at this port can damage the instrument!

CAUTION

Only use a $50\ \Omega$ N-type connector to connect to the **RF IN** port of the 9101. Use of any other connector may result in damage of the instrument.

Take care of proper termination

Use of cables and sources with an impedance other than 50Ω results in inaccurate measurements.

If you want to test a device with an impedance of 75Ω , refer to section "["Changing the input impedance" on page 52](#) to adapt the 9101 settings.

The link between the device under test and the 9101 Handheld Spectrum Analyzer may be attenuated, for example because the link is an antenna or includes a power splitter, or a long cable. The effect of the attenuation on the measurement results can be compensated by entering the attenuation value in the 9101, see section "["Compensating gains and losses" on page 51](#).

EXT. TRIG. connector

Mainly used in spectrum analysis measurements. Using this connector the unit can be provided with an external trigger signal. Here, an external device that triggers the measurement by sending an impulse can be connected.

WARNING

The **EXT. TRIG.** input is designed for TTL input levels only. Higher levels at this port can damage the instrument!

Figure 2 9101 connectors on the left-hand side of the instrument

SERIAL (RS-232) connector

This 9-pin sub-D connector on the left-hand side of the 9101 Handheld Spectrum Analyzer can be used to control the instrument remotely via serial interface (RS-232). The command set and responses are explained in section "["SCPI Command Reference" on page 101](#).

Use a null modem (PC to PC) cable to connect the 9101 to a controlling PC.

LAN connector

The 9101 can also be controlled via local area network (LAN) using a TCP/IP connection. The LAN connector is located on the left side of the instrument. The IP address can be set up in the System Configuration menu or via RS-232. The 9101 can be operated in networks operating at 100 Mbps, but is capable of transmitting and receiving at 10 Mbps only.

The command set to control the 9101 and the responses from the 9101 are explained in section ["SCPI Command Reference" on page 101](#).

Connect the 9101 to the LAN with a standard LAN cable with RJ-45 connectors.

Powering up the unit

The 9101 is switched on and off using the power switch located at the top of the instrument. It takes about 55 seconds for the 9101 to load and start its software.

Starting measurements

The 9101 starts measuring and displaying results automatically after powering the instrument. It starts in the measurement mode last active.

Using the front panel

Overview

The front panel is divided into different sections as follows:

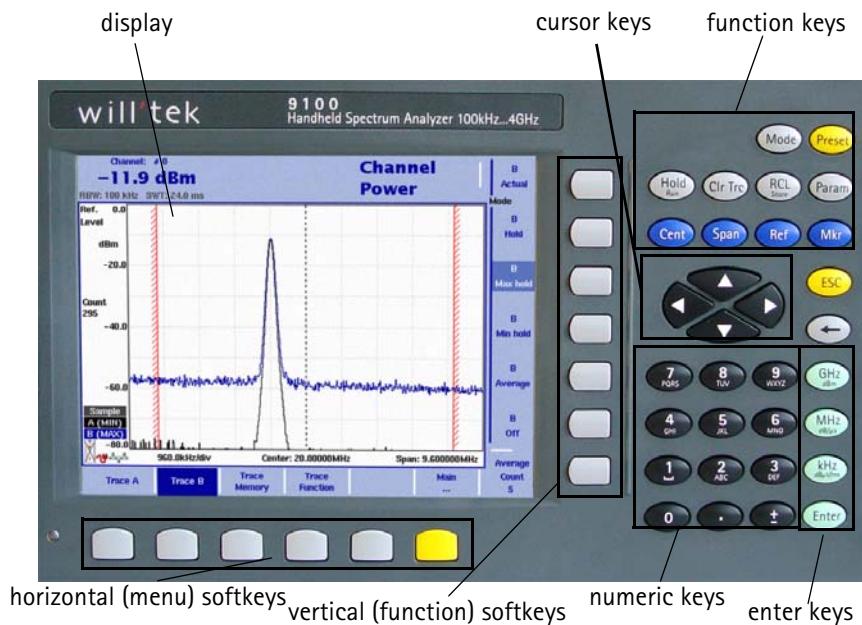


Figure 3 Front panel elements

Battery status LED

This LED has different states:

- The LED lights green when the 9101 is being operated from its battery and no external power is supplied.
- The LED lights yellow when the battery is connected to an external power supply and being loaded.
- The LED is off when the loading procedure is completed, the battery is fully loaded or when there is no battery in the 9100's battery compartment.
- When the LED is flashing yellow quickly and permanently, there is a problem with the battery or the charger. Please report this problem to a Willtek service center.

NOTE

Signal level measurement results may be impaired when the battery is low, that means when the battery has less than 10% of its nominal capacity. See [Table 6 on page 15](#) for an indication when the battery is low. For a detailed description on installing and charging the battery please refer to your getting started manual.

Display

The 6.5 inch display is divided into the following sections (see [Figure 4](#)):

- Results area
- Marker field
- Input field
- Softkey descriptions

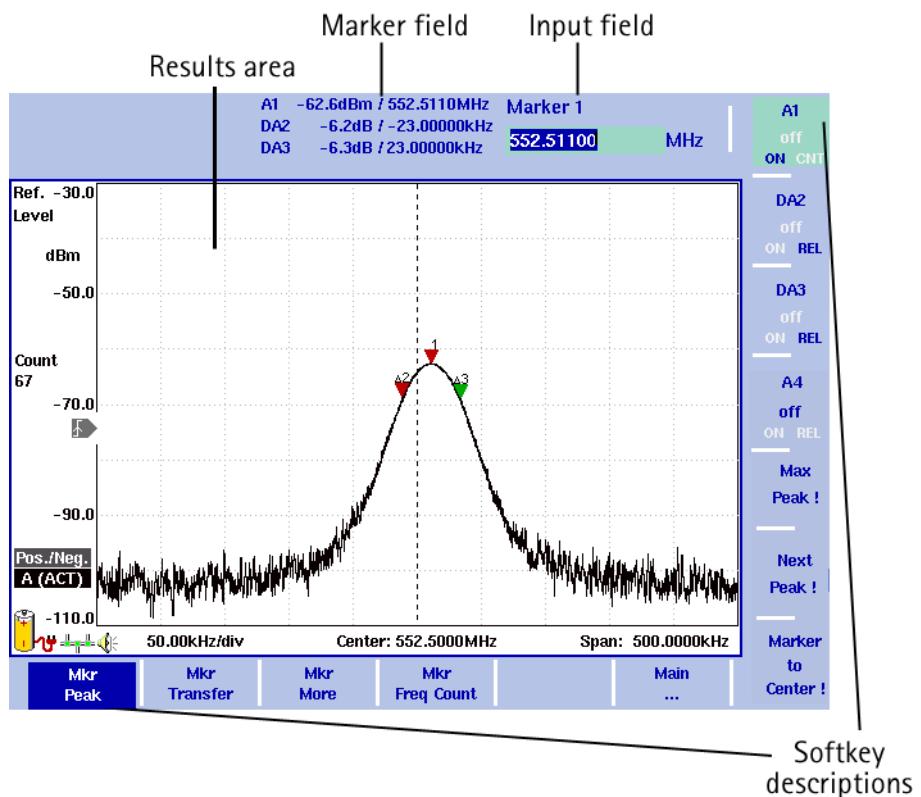


Figure 4 Display sections

Results area

Results area (graph)

The results area utilizes most of the screen and provides you with the measurement results. A grid of ten vertical and eight horizontal rows eases readability of results from the axes. There may be one or two graphs, depending on the number of traces selected.

Horizontal axis

The horizontal axis is the frequency axis for the spectral components. The zero span mode is an exception, as the horizontal axis is the time axis in this case. The values of the frequencies at both ends of the scale are indicated (start and stop frequencies).

Vertical axis

The vertical axis reflects the RF power. Depending on your choice of the level unit, the RF power is indicated in dBm, dBV, dBmV, or dB μ V. The top end of the power scale is called the reference level.

Symbols (icons)

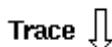
Apart from the results graph itself, several icons are available to indicate the status of the 9101 as follows:

Table 6 Icons on the display

Symbol	Meaning
	The 9101 is taking its operating current from the battery. The colored area marks how much of the capacity is still available. For 30% or more, the area is indicated in yellow; from 10% to 30%, the area is shown in red, and in white for less than 10%. The 9101 sounds a double beep when the capacity goes below 30% of its nominal value and two double beeps below 10%.
	The 9101 is connected to an external DC supply.
	The 9101 cannot determine the battery charge although the battery can still be used and recharged. Please contact Willtek service to have your battery checked.
	The 9101 cannot determine the battery charge; typically appears during the last third of operating time of battery operation. Please contact Willtek service to have your battery checked.
	The battery is not installed and the 9101 is operated from the external power supply.
	The 9101 is connected to a local area network (LAN).
	A video trigger has been set at the power level indicated. The icon also displays the slope of the trigger.
	Demodulation is switched on so that the 9101 emits the demodulated signal at the loudspeaker.

Other screen elements

The bar to the left of the vertical axis carries some or all of the elements shown below:

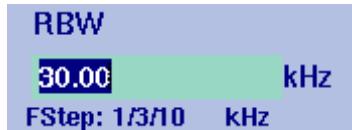

Table 7 Texts on the left-hand side

Text	Meaning
Ref. Level	Indicates the top-most level on the vertical (power) axis. Can be modified with the REF function key.

Table 7 Texts on the left-hand side

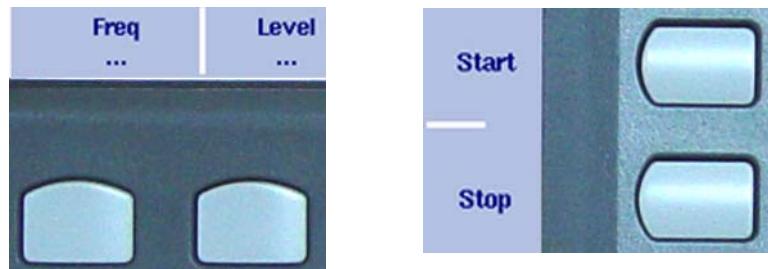
Text	Meaning
dBm	Shows the unit in which power, is displayed. Can be changed in the Level > Units menu. Units can be switched between logarithmic and linear by pressing the Units softkey.
dB μ V	Logarithmic units are: dBm, dB μ V, dBmV, dBV, dB μ V/m, dBmV/m, dBVm.
dBmV	Linear units are: V, mV, μ V, mW μ W, V/m, mW/m ² .
dBV	
V	
mV	
μ V	
mW	
μ W	
dB μ V/m	
dBmV/m	
dBV/m	
V/m	
mW/m ²	
HOLD	Indicates when measurements have been halted with a press of the HOLD/RUN function key.
Count	The number following shows the progress of the measurements, that means it indicates how many measurements with the present configuration have already been taken. The counter continues while the trace hold mode is enabled. It is reset whenever a parameter affecting the measurements is changed, that means frequencies, filters or attenuation.
Ext. Dev.	Indicates that the external device compensation is turned on, that means the attenuation of any coupling device is taken into account. The external device compensation can be set up as shown in section " Compensating gains and losses " on page 51 .
UNCAL	When displayed, the filter and sweep time setting do not permit proper measurements.
Pos./Neg.	Shows the current detector setting. The detector can be changed as explained in section " Selecting the detection method " on page 61 . The RMS detector is available if the 9132 RMS Detector Option is installed and activated on your 9101.
Pos. Peak	
Neg. Peak	
Sample	
RMS	
A/B (ACT)	Shows the currently selected trace mode for the respective trace. The background color of the text coincides with the color of the graph. For more information on trace modes, see section " Selecting the trace mode " on page 56 .
A/B (HLD)	
A/B (MAX)	
A/B (MIN)	
A/B (AVG)	

Trace finder


If more than 90 percent of a results trace is not shown onscreen because it is above or below screen boundaries, a trace finder icon consisting of an up or down arrow and the word "Trace" shows where the trace can be found. The trace finder icon is positioned in the middle of the results display. By modifying the reference level accordingly you can bring the trace back into view.

Marker field

A1	-68.0dBm / 2.246400GHz
DA6	2.8dB / 921.6000MHz
B5	-53.5dBm / 2.808000GHz
B2	-54.3dBm / 1.800000GHz


If any of the markers is active, the marker field is displayed, showing the measurement values at the marker positions. Up to four markers are displayed with their level and frequency values. If you use four markers and activate a fifth (up to six markers are available) one marker value will be hidden and the new one will be displayed instead. By pressing the relevant marker softkey you can display the hidden marker value again. A marker can be switched from absolute to relative values. The values are then shown relative to those of marker 1 (e.g. A1).

Input field

The input field allows you to enter a number or a text, depending on the selected function. The meaning of the input value is expressed by the header line. Some input fields have an additional explanation of the step size beneath. The step size applies when the value is changed using the up/down cursor keys instead of the numeric keys.

Softkey descriptions

The softkey descriptions indicate the assignment of a function to a softkey. They are aligned to the lower side with the horizontal softkeys and to the right-hand side with the vertical softkeys. See "["Softkeys" on page 21](#) for more information.

Keypad

The front panel carries a large number of keys, giving you direct access to functions and menus and allowing you to enter test parameters such as the center frequency. The keypad is divided into the following sections:

Function keys

The function keys have specific functions which do not change. Therefore they are sometimes also referred to as "hardkeys" in contrast to the softkeys, whose functions change with the description given on the screen.

The function keys are:

Table 8 Function keys

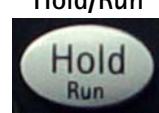

Key	Function
	Measurement mode selection. This function key allows you to select between different predefined types of measurements for specific applications. It also provides access to system settings.
	Presets all the entry fields of the selected mode to the factory default settings. It does not affect the settings of other modes. To prevent accidental resets, the preset function does not execute after a short keypress. Press this function key for at least half a second to return to the defaults.
	Stops and starts sweeps.
	This function key calls up the parameter pages summarizing the current settings. Press Exit to close the parameter window. Note that the parameter windows differ between the measurement modes. Parameters that lead to an UNCAL warning are marked with a diamond.
	Provides access to the Memory menus.

Table 8 Function keys

Key	Function
	This function key resets previous results (including averages), the sweep counter and the failure counter, and starts a new sweep.
	Direct access to the center frequency input field within the Frequency menu.
	Direct access to the frequency span input field within the Frequency menu.
	Direct access to the reference level input field.
	Access to the Marker menu.

Cursor keys

In an input field, the up and down cursor keys are used to increase or decrease the current value. The left and right cursor keys move the cursor position by one digit.

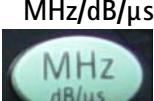
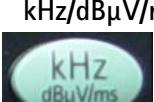
If a marker field is active, the up and down cursors move the marker by half a division up or down, respectively. The left and right cursor keys move the marker pixelwise.

Immediate reaction

Any change of an input parameter with the cursor keys has immediate effect. With the straight feedback on the screen, you can easily adjust parameters to the optimum values with a trial-and-error approach.

Numeric keys

The numeric keys allow you to enter a value in a way similar to a pocket calculator. On some input fields, you can enter text instead, as on a mobile phone.



Invalid entries

If you enter an invalid number or string, the 9101 beeps and corrects the entry to the closest valid value.

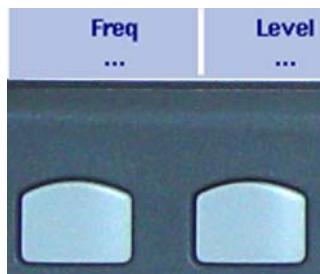
The **±** key offers an additional feature. After connecting a PCL printer to the 9101 you can print screens directly by pressing this key. For details on configuring printers and printing refer to ["Configuring a printer" on page 41](#) and ["Printing" on page 32](#).

Enter keys Any input of numerical or alphanumerical entries must be closed or can be affected by one of the enter keys. The meaning of the individual enter keys is as follows:

Table 9 Enter keys

Key	Function
GHz/dBm	In frequency input fields, closes the entry by applying the unit GHz (gigahertz). In power input fields, assigns the unit dBm to the entered value.
MHz/dB/μs	In frequency input fields, closes the entry by applying the unit MHz (megahertz). In power input fields, assigns the unit dB to the entered value. In time parameter input fields, assigns the unit μs to the value.
kHz/dBμV/ms	In frequency input fields, closes the entry by applying the unit kHz (kilohertz). In power input fields, assigns the unit dBμV to the entered value. In time parameter input fields, assigns the unit ms to the value.
Enter	Confirms an entry without a unit and with the units hertz and seconds.
Escape key 	If pressed while an input field is open, the ESCAPE key closes this input field without changing the previous value.

Backspace key


Deletes the last entered alphanumerical (backspace).

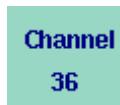
When an input field is entered, all digits are marked. By pressing the backspace key, the entire entry is deleted.

Softkeys

The functions of the softkeys change with the description on the screen given next to the respective key.

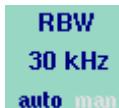
Horizontal (menu) softkeys

The horizontal softkeys provide access to the various menus. The name of the active menu is highlighted; the functions of a menu are offered on the vertical softkeys. Submenus are indicated with three dots ("..."); the menu softkey without the dots leads you one level up in the menu hierarchy.

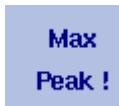

Vertical (function) softkeys

The vertical softkeys allow you to change the settings of the 9101.

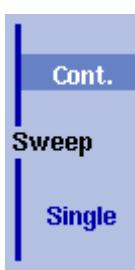
The vertical softkeys in the 9101 carry out one of the following functions:


- Normal settings – by pushing the softkey, an entry field appears on the top of the display, allowing you to enter numerical or alphanumerical data. The data become valid after pushing one of the enter keys. Some of the softkeys for normal settings also describe the currently set value.
Example: The Channel softkey in channel power mode.

- Combined entry and selection – this type of softkey allows you to change a value and also to change a related setting, for example changing between automatic and manual parameter setting. The first push on the softkey opens the entry field like the normal settings softkey. Pushing it several times results in the 9101 toggling between the available options. The option

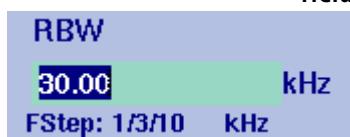

currently selected is indicated in blue while the inactive options are shown in white.

Example: The RBW softkey.


- Execution – by pushing the softkey, the function described is performed. An execution softkey is indicated by an exclamation mark.

Example: Max Peak softkey in the Marker menu.

- Selection – several selection softkeys allow you to choose between different options. The selection softkeys for one function are indicated by a vertical bar connecting the softkeys, and a text describing the function. The option currently active is highlighted, i.e. indicated by inverted colors.


Example: The TrigMode softkeys in the Sweep menu.

Entering numbers and text

Whenever an input field is open, it expects you to enter either numbers or characters (where characters may also include numerical digits). You will notice immediately what the 9101 expects as the numeric keys have the appropriate function.

Filling in a numerical input field

When the 9101 software expects a numerical entry, pressing a numeric key results in the appropriate digit to appear in the input field. The 9101 may or may not allow you to enter a decimal number or a signed value, so the keys for the decimal point and for changing the sign of the number are either active or not. When all digits, the sign and the decimal point have been entered as required, one of the enter keys must be pressed. Numbers often carry a unit with them; the enter keys provide the appropriate units.

Acoustical reaction on inputs

After entering a new parameter value, one of two acoustical alarms may appear:

- Short beep (hint): The parameter is out of limits, or the input affects an associated parameter; the respective parameter has been corrected by the 9101 Handheld Spectrum Analyzer.
Example 1: An invalid stop frequency of 5 GHz has been entered, resulting in a short beep and the maximum stop frequency of 4 GHz being set.
Example 2: The start frequency is set to 2 GHz, the stop frequency is set to 4 GHz and the user enters a new span of 3 GHz. This results in the start frequency being changed to 1 GHz and a short beep to sound.
- Long beep (error): A parameter is set to an invalid value and the 9101 Handheld Spectrum Analyzer resumes the old value, sounding an error beep.
Example: After entering a new (invalid) attenuation value of 60 dB, the 9101 Handheld Spectrum Analyzer sounds a long beep and sets the attenuation back to the previous value.

Filling in a text input field

Store Settings

RT1HN87

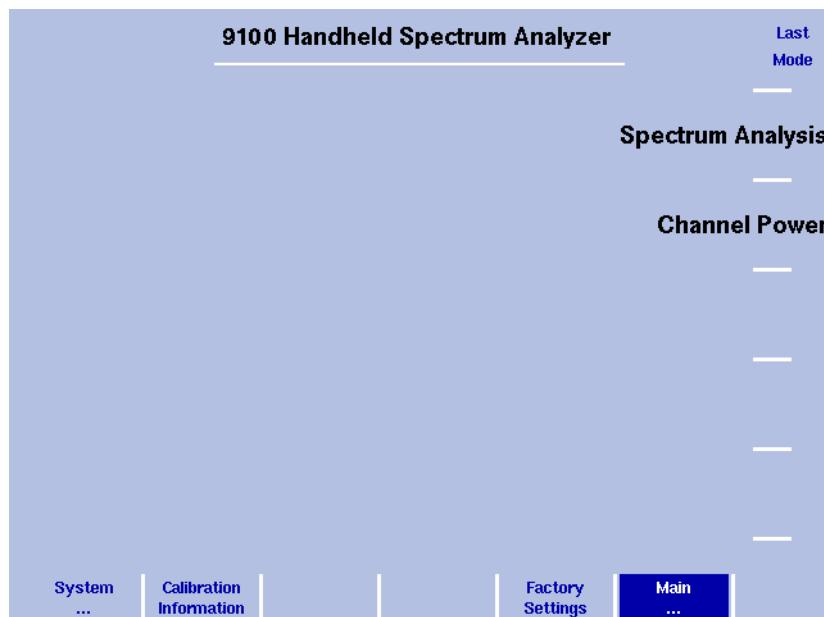
Some input fields can be filled with alphanumerical text instead. The numeric keys can then be used to enter characters. The keys may have several letters or numbers assigned. The assignment of the keys in this case is as follows:

Table 10 Keys for alphanumerical text entry

Key	Assignment
0	0
1	1
2	A, B, C, 2
3	D, E, F, 3
4	G, H, I, 4
5	J, K, L, 5
6	M, N, 0, 6
7	P, Q, R, S, 7
8	T, U, V, 8
9	W, X, Y, Z, 9
.	not assigned
±	not assigned

To enter a character, push the key rapidly and repeatedly until the desired character appears in the input field.

Changing the input


Once an input field is open, you can move the cursor with the **LEFT/RIGHT** cursor keys to place it within the number or text. Additional digits or characters can be entered, or you can delete the digit or character in front of the cursor using the **BACKSPACE** key.

Selecting the measurement mode

The 9101 provides different measurement modes:

- The spectrum analysis mode is most versatile. It provides most of the options included in all other modes. For more information on this mode, refer to [page 45](#).
- The channel power mode allows you to measure the radiated power within a certain frequency band. Read more about the channel power mode on [page 71](#).

In addition, the Mode menu provides access to the system settings, e.g. the I/O configuration, and to version information. See section "["Checking general settings" on page 32](#) for more details.

Figure 5 Selecting a measurement mode

To select the measurement mode, proceed as follows:

- 1 Push the **MODE** function key.
The Mode menu appears (see [Figure 5](#)).
- 2 Select a new mode or return to the mode last active by pressing the respective softkey.
The main menu of the selected mode appears. If you select a new mode, all parameters are set to the values which were used when the mode was last active. If, however, you resume the last active mode, measurements are continued.

Working with the markers

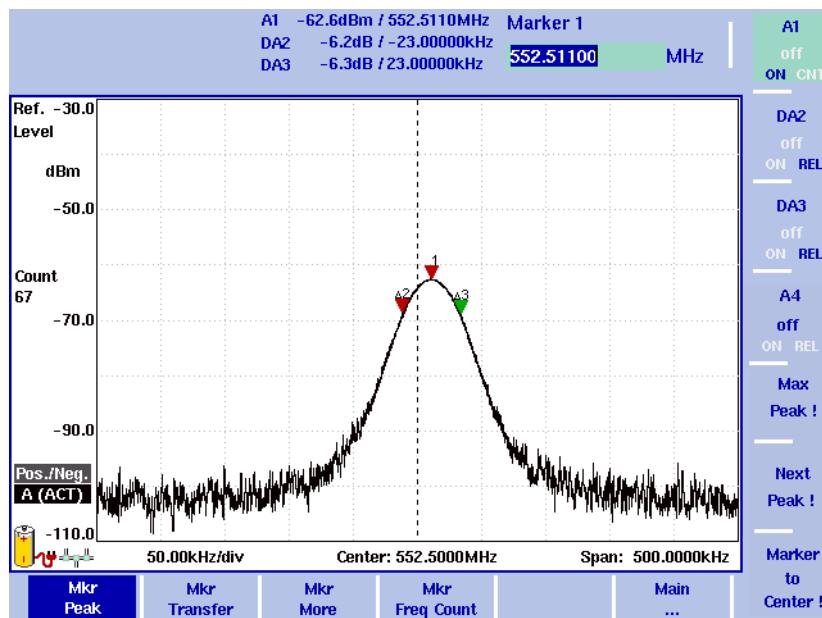


Figure 6 Example of markers

The 9101 includes powerful and easy-to-use marker functions. Up to six markers can be used; up to five of them can be delta markers. Markers are easy to place and you can easily affect the center frequency and the reference level upon a keypress. If you use two traces you can also use markers on trace A and trace B. The markers are named accordingly (e.g. A1, B1). Delta markers are identified by D (e.g. DA1).

It is important to note that if you place the cursor on a signal peak and then reduce the span, the marker position may be offset a little from the peak. This is due to the limited resolution of the displayed frequencies when using a high span. After reducing the span, the marker should be readjusted to the new peak.

Enabling and moving a marker

- 1 From the main menu, select **Marker**. Or push the **MKR** function key in any menu.
If you select **Marker** from the main menu when no marker is active, the softkey for marker 1 is highlighted.
To enable marker 1, toggle the softkey until "ON" is highlighted.
The input field for marker 1 appears.
If you use the **MKR** function key when no marker is active, marker 1 (A1 or B1) will be enabled at the maximum peak. The input field for marker 1 appears.
- 2 If you want to enable another marker, push the appropriate softkey (**A1** through **A4** or **B1** through **B4**). If you want to use more than four markers, press the **Mkr More** softkey to display the marker softkeys for marker 5 and marker 6 and proceed as described for markers 1 to 4.
The marker is enabled and the input field opens; the selected marker appears in the marker field in the top bar of the display.

- 3 If required, move the marker to another position using the cursor keys, one of the softkeys **Max Peak** and **Next Peak**, or by entering the frequency with the numeric keys and the appropriate enter key.

Disabling a marker

- 1 From the main menu, select **Marker**. Or push the **MKR** function key in any menu.
The Marker menu appears and the input field for marker 1 appears.
- 2 Push the softkey (one of **A1** through **A6** or **B1** through **B6**) for the marker which you want to disable. If you use more than four markers you can display the softkeys for marker 5 and 6 by pressing the **Mkr More** softkey. Toggle the softkey until "OFF" is highlighted. The marker is disabled and the respective marker values disappear in the marker field at the top. By toggling to "ON" again the marker will be enabled again.

Enabling a delta marker

For delta markers, the power level and frequency relative to marker 1 is displayed in the marker field. Marker 1 cannot be a delta marker. If marker 1 is not yet enabled when you enable another marker as a delta marker, marker 1 will be enabled automatically.

- 1 From the main menu, select **Marker**, or push the **MKR** function key in any menu.
- 2 Select the softkey for the marker which you want to turn into a delta marker (**A2** through **A6** or **B2** through **B6**). If you use more than four markers you can display the softkeys for marker 5 and 6 by pressing the **Mkr More** softkey.
If not already enabled, the marker is turned on.
- 3 Push the softkey until "REL" is highlighted. The respective marker in the marker field is indicated as a delta marker, e.g. DA2 instead of A2.

Disabling a delta marker

- 1 From the main menu, select **Marker**, or push the **MKR** function key in any menu.
The Marker menu and the marker 1 input field appear.
- 2 Select the softkey for the delta marker that you want to disable (e.g. DA2). If you use more than four markers you can display the softkeys for marker 5 and 6 by pressing the **Mkr More** softkey.
- 3 To disable the marker completely, push the softkey until "OFF" is highlighted. To turn the delta marker into a normal marker displaying absolute values again toggle the softkey to "ON".

NOTE

The described procedures for enabling and disabling delta markers apply to serial numbers 5004001 and higher.

Setting a marker on a frequency relative to marker 1

- 1 Enable a delta marker as described in ["Enabling a delta marker"](#). For the selected delta marker, the input field shows the frequency relative to marker 1.
- 2 Enter a (signed) frequency relative to the frequency at marker 1, either using the numeric keys and the respective enter key, or moving the cursor to that frequency with the help of the cursor keys. The marker field indicates the desired frequency offset for that marker, along with the power level relative to the power at marker 1.

Changing the center frequency with a marker

This function modifies the center frequency, adapting the frequency of a selectable marker.

- 1 From the main menu, select **Marker**, or push the **Mkr** function key in any menu. The Marker menu and the input field for marker 1 appear.
- 2 If you want to use the frequency at a marker position other than marker 1, push the appropriate softkey (**A2** through **A6** or **B2** through **B6**). If you use more than four markers you can display the softkeys for marker 5 and 6 by pressing the **Mkr More** softkey.
- 3 Push the **Marker to Center** softkey. The center frequency changes to the frequency at which the selected marker is located. The frequency span only changes if the change in center frequency would lead to an invalid start or stop frequency.

Changing the reference level with the marker

The reference level can be changed to the level at a marker position as follows:

- 1 From the main menu, select **Marker**, or push the **Mkr** function key in any menu.
- 2 Select the **Mkr Transfer** menu.
- 3 If you want to use the power level at a marker position other than marker 1, push the appropriate softkey (**A2** through **A6** or **B2** through **B6**). If you use more than four markers you can display the softkeys for marker 5 and 6 by pressing the **Mkr More** softkey.
- 4 Push the **Marker to Ref. Lvl** softkey. The reference level changes to the level of the selected marker.

Assigning the marker frequency to FStep

For measurements of harmonics or intermodulation products, it can be useful to easily change between frequencies in user-defined steps. The "Marker to FStep" function assigns the active marker (or delta marker) frequency to FStep, the step width for the selection of center frequency and marker frequency.

Assumption: One of the markers A1 through A6 or B1 to B6 is active.

- 1 From the main menu, select **Marker > Mkr Transfer** to access the Marker Transfer menu.

2 Push Marker to FStep.

The FStep parameter assumes manual mode. If the currently active marker is an absolute marker, the frequency at the marker position becomes the new FStep value.

Alternatively, if the currently active marker is a relative (delta) marker, the difference between the frequencies at the active marker and marker 1 becomes the new FStep value.

If the new FStep value is higher than 1 GHz, the old FStep value is maintained and the 9101 sounds a hint beep.

Using limit lines

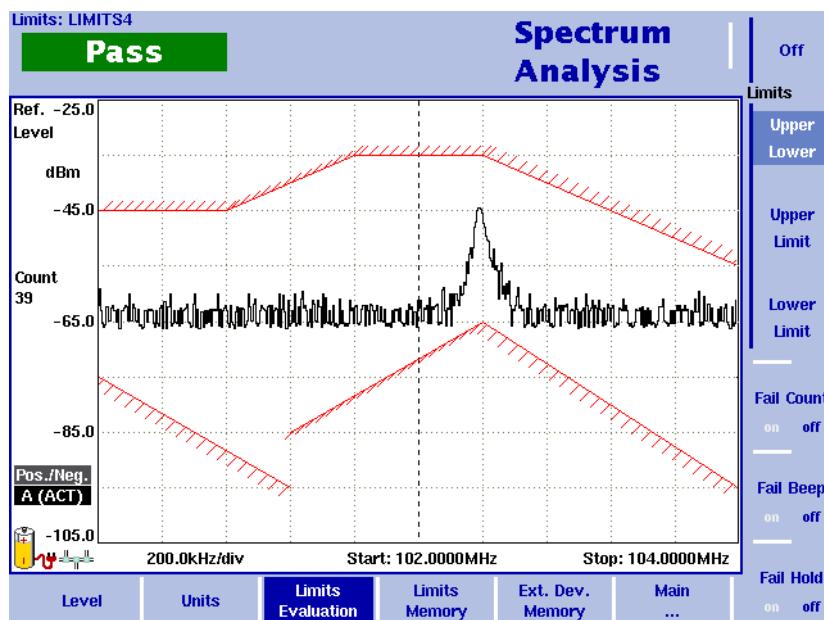


Figure 7 Example of limit lines in spectrum analysis

Overview

A very useful feature of the 9101 is the possibility to set limits for the trace A results. These are displayed on the screen and the 9101 can show if the results exceed the limits.

Two different limit modes exist in the 9101. In the first case, the limits exist of horizontal lines for the upper and lower limit. This method is called "simple limits"; the limits can be entered directly in the Limits menus of the 9101.

In the second case, there are more complex limits as shown in the example in Figure 7. These limits can be entered with a comfortable tool on a PC and loaded to the 9101 via RS-232 or LAN interface. A set of limit lines can be used to define a measurement template. There are versatile tools around these limits available on the 9101, such as a fail counter, a beep when a failure occurs, or a measurement hold function upon failure. The limits can be used both in the frequency and in the time domain.

Up to 99 sets of limits can be stored on the 9101.

The actual limit values must be defined on a PC and loaded to the 9101 using the 9100 Data Exchange Software. Several limit files can be stored on the 9101. The name of the current limit file is indicated in the upper left-hand corner.

Note that the limits are defined within a grid, no matter what the units on the vertical and horizontal axes are. This way, you can apply the limits to different frequency ranges and power levels. It is your responsibility, however, to select a useful frequency range, reference level and level scale.

Note that a FAIL indication may occur if the start frequency is 0 Hz and an upper limit is set at this frequency.

Using simple limits

Simple limits consist of constant upper and lower limits. They must be activated to take effect. Once activated, each measurement is accompanied by a Pass/Fail verdict indicating whether or not the measurement result was within the limits.

Switching simple limits on and off

By switching limit lines on, any previously active limit template is disabled.

- 1 Press **Level > Limits Memory**.
- 2 Press the **Simple Limits** softkey so that the new choice (on or off) is highlighted.

When switching limits on, red horizontal lines indicating the upper and lower limits appear. A Pass/Fail verdict is displayed with every new measurement in the upper left corner of the screen. The text above the verdict ("Simple Limits") indicates that the verdict applies to simple limits. When switching limits off, the limit lines and the verdict disappear.

Defining upper and lower limits

The limits can be changed only when simple limits are activated. The range of valid entries depends on the power scale displayed (vertical axis) as follows:

Table 11 Valid entries for upper/lower simple limits (relative to reference level)

Scale	Valid range
1 dB/division	-8 ... 0 dB
3 dB/division	-24 ... 0 dB
5 dB/division	-40 ... 0 dB
10 dB/division	-80 ... 0 dB
15 dB/division	-120 ... 0 dB
20 dB/division	-160 ... 0 dB

Follow the steps below to define simple upper and lower limits.

- 1 Press **Level > Limits Memory**.
- 2 Press the **Upper** softkey, enter a new value for the upper limit (in dB, relative to the reference level) (or move the upper limit with the **UP/DOWN** cursor keys) and confirm with **MHz/dB/µs** or **ENTER**.
The upper limit line is moved to the new value.
- 3 Press the **Lower** softkey, enter a new value for the lower limit (in dB) (or move the lower limit with the **UP/DOWN** cursor keys) and confirm with **MHz/dB/µs** or **ENTER**.
The lower limit line is moved to the new value.

Using limit templates

Limits can be comfortably defined with a PC-based tool and loaded to the 9101. This is described in full detail in chapter ["9100 Data Exchange Software" on page 161](#). The sections below describe how to recall, delete, activate and deactivate limit templates.

Selecting limit lines within the 9101

- 1 From the main menu, select **Level > Limits Memory**.
The Limits Memory menu appears.
- 2 Push the **Recall Limit Template** softkey.
An entry field appears, together with a file selection box.
- 3 Select a file either by moving the selection to its file name using the **UP/DOWN** cursor keys, or by entering the file name in the entry field and closing the input field by pressing **ENTER**.
The file with the limits is loaded and the upper/lower limits are activated immediately.

Activating and deactivating limit templates

- 1 Select a limits file (see section ["Selecting limit lines within the 9101"](#)).
- 2 Select **Level > Limits Evaluation**
The Limits Evaluation menu appears.
- 3 Select the limits option you want by pushing the appropriate softkey from the following choice: **Off**, **Upper/Lower**, **Upper Limit**, **Lower Limit**.
If you selected **Off**, no limits are displayed. Otherwise, the selected limits curve (upper and/or lower limits) appears on the screen. A Pass/Fail indication is given for each measurement trace in the upper left-hand corner.

Deleting limit files in the 9101

- 1 From the main menu, select **Level > Limits Memory**.
- 2 a. To delete an individual file, push **Delete Limit Template**, select a limits file with the **UP/DOWN** cursor keys and push **ENTER** to delete an individual file (pressing **Esc** aborts the process before the file is deleted).
b. To delete all limit files stored in the 9101, push **Delete All Templates**. Confirm by pressing **ENTER**, if you really want to delete all limit files.

Counting limit failures

When limit checking is enabled, a failure counter can be activated. The number of failures appears below the Pass/Fail verdict. The counter makes particular sense for statistical evaluations. For this application, it is important to define the number of measurements. The following sequence can be useful to obtain a failure count in conjunction with a defined number of measurement traces.

- 1 Select a limited number of traces (**Freq > Sweep**, see "[Performing a limited number of measurements](#)" on page 55).
- 2 From the main menu, select **Level > Limits Evaluation > Fail Count** to turn the failure counter on; if it was on already it should be switched off and on again.
The failure counter is reset to 0.
- 3 Push the **HOLD/RUN** softkey to start the measurement.
Both the measurement counter and the failure counter start from 0. When the selected number of traces has been reached, the measurements are stopped and you can read the failure count.

Resetting the counter

The failure counter for the limits check can be reset by turning it off and then on again (in the **Level > Limits Evaluation** menu).

Enabling a beep upon failures

- 1 From the main menu, select **Level > Limits Evaluation**.
The Limits Evaluation menu appears.
- 2 Push the **Fail Beep** softkey to activate or deactivate the beep counter:
If activated, a beep sounds each time the measured signal exceeds the limits.

Viewing a failed measurement

This feature can be useful if you want to stop the measurement and view the measured signal when it fails the limits. Note that the 9101 should be set to continuous measurements.

- 1 From the main menu, select **Level > Limits Evaluation**.
- 2 Push the **Fail Hold** softkey once or twice to enable or disable the hold-on-fail function.
The measurements are halted when a failure occurs. The trace of the failed signal remains on screen.

Measurements can also be stored and recalled in the 9101 for later analysis or comparison. This is shown in "[Storing and loading traces](#)" on page 63.

With the 9100 Data Exchange Software, traces can also be transferred to and viewed and stored on a PC. For more details, please refer to chapter "[9100 Data Exchange Software](#)" on page 161.

Printing

The 9101 offers the possibility of printing measurement results, for example traces, directly from the instrument. In order to print results screens on a connected printer simply press the **±** key on the numeric keypad of the 9101's front panel.

NOTE

If an input field is active while you press the **±** key, it has the **±** functionality assigned to it. In this case printing is not possible. In order to be able to print deactivate the input field first by deselecting the respective softkey.

For details on supported printers and configuring a printer refer to "[Configuring a printer](#)" on page 41.

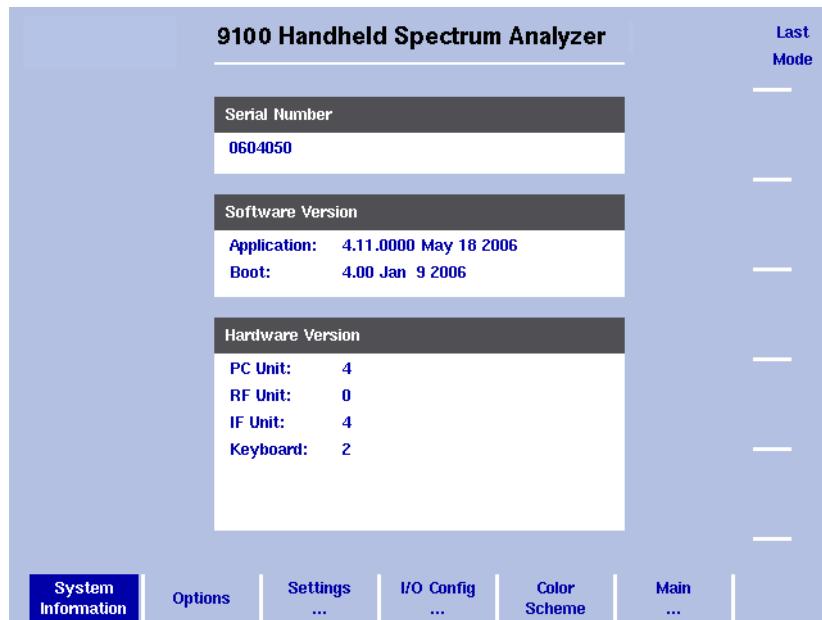
Controlling the 9101 from a PC

The 9101 can be used under remote control from a PC. The interfaces supported for this are the serial interface (RS-232) and the LAN (TCP/IP). Please refer to section "[SCPI Command Reference](#)" on page 101 for more information on remote control.

Returning from remote control to local mode

To gain manual control after using the 9101 under remote control, press **ESCAPE**.

Checking general settings


This section covers information about the unit, setting display brightness, time and date, and configuring the remote control interfaces of the 9101.

Reading the serial number You can find the serial number of your 9101 as follows:

- 1 Push the **MODE** function key.

2 Select **System**.

The System Information display appears (see [Figure 8](#)), showing the serial number, the installed software version and the installed option.

[Figure 8](#) System Information menu

Reading the software version number

Before loading a new software version or reporting problems, you may want to check the currently installed version.

- 1 Press the **MODE** function key followed by the **System** softkey. The System Information menu appears.
- 2 Read and note the software version number in the field entitled Application.

Reviewing the calibration

As for all test instruments, the 9101 Handheld Spectrum Analyzer's accuracy should be checked against its specifications. This process is called calibration. If the 9101 accuracy falls outside the specified tolerance, it may be necessary to correct the instrument.

Willtek recommends a calibration interval of one year. The 9101 stores the date of the last calibration by a Willtek-certified lab and the date when the next calibration is due. In addition, you can document when the calibration date has been reviewed last.

To check if the 9101 is due for calibration, proceed as follows:

Press the **MODE** function key followed by the **Calibration Information** softkey. The Calibration Information menu appears.

Figure 9 Calibration Information menu

- 1 Here the calibration details for the instrument are displayed.
The Calibration Number area shows the calibration number.
The first line of the Calibration area indicates the date of the last calibration and the organization calibrating the 9101.
The second line indicates when and by whom the calibration has been checked last.
The third line indicates when the next calibration is due. This date is typically one year after the last calibration.
- 2 Push the **Date Last Check** softkey to change the last check date. It will be set to the actual date as set by the built-in real-time clock.
- 3 Push the **Name Last Check** softkey to enter the name of the person that carried out the last calibration date review.

NOTE

The described procedure for reviewing the calibration applies to serial numbers 5004001 and higher.

Checking installed options

Willtek provides different application programs and options for the 9101 Handheld Spectrum Analyzer. These may or may not be active on your instrument. To check which options are actually installed on your 9101, take the following steps:

- 1 Press the **MODE** function key followed by the **System** softkey.
The System Information menu appears.
- 2 Select **Options**.
The Options menu appears, indicating the installed options in bold print with a tick in front; the options not installed are shown in grey.

Installing a new option

Software options can be installed by entering an activation key which you can purchase from Willtek or one of its representatives. To install a new option:

- 1 Press the **MODE** function key followed by the **System** softkey.
The System Information menu appears.
- 2 Select **Options** and press **Activate Options**.
- 3 Enter the activation key and press **ENTER**.
If the code is valid, the appropriate option is shown in bold print with a tick in front, indicating that the option is accessible now.

Changing the display brightness

- 1 Push the **MODE** function key.
- 2 Select **System > Settings**.
The general settings display appears (see [Figure 10](#)), showing the current display backlight setting as a percentage.
- 3 Press the **Display Extern** softkey to change the backlight setting for usage while the 9101 is connected to an external power supply
Press the **Display Battery** softkey to change the backlight setting for running the 9101 on battery. Here, you can specify a reduced backlight setting for battery usage in order to save energy.
In both cases the backlight input field is highlighted.
- 4 Enter a new value in the field for the backlight setting you intend to change and confirm with **ENTER**, or change the current value with the **UP/DOWN** cursor keys.
The 9101 display uses the new brightness values.

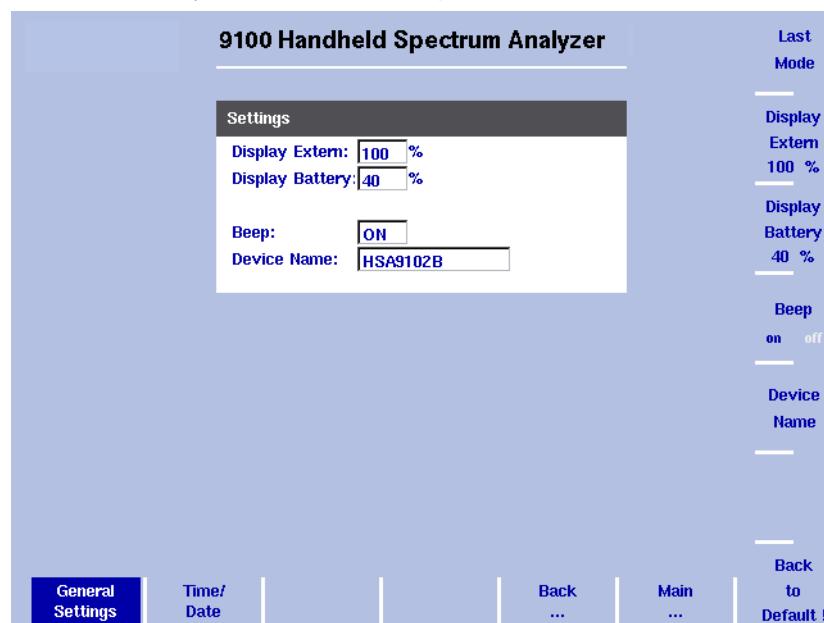


Figure 10 General Settings menu

NOTE

The display setting for adjusting the brightness is not affected by a press on the **PRESET** function key but by a push on the **Back to Defaults** softkey.

Enabling and disabling beeps

Warning and error beeps can be turned off and on in the General Settings menu:

- 1 Push the **MODE** function key.
- 2 Select **System > Settings**.
The general settings display appears, showing the current setting for beeps (on or off).
- 3 Press the **Beep** softkey several times until the desired setting is highlighted (on or off).
The beep input field shows the current setting.

NOTE

This parameter is not affected by a press on the **RESET** function key but by a push on the **Back to Defaults** softkey.

Assigning a device name to the instrument

A device name for the 9101 can be useful if you have several units of the 9101 Handheld Spectrum Analyzer. They can be identified if you choose different names for them. The name also appears on traces transferred to the PC with the 9100 Data Exchange Software.

You can enter a new name as follows:

- 1 Push the **MODE** function key.
- 2 Select **System > General Settings**.
The general settings display appears, showing the current device name.
- 3 Press the **Device Name** softkey.
The device name input field is active so you can overwrite the current name.
- 4 Enter a new name (max. 11 characters; see section "[Filling in a text input field](#) on page 23 to learn how to do this) and close the entry field by pressing **ENTER**.
The new name is displayed in the device name field.

NOTE

This parameter is not affected by a press on the **RESET** function key but by a push on the **Back to Defaults** softkey.

Adjusting date and time in the instrument

The 9101 Handheld Spectrum Analyzer includes a real-time clock. It can be used to show the actual date and time or to compare it with the date when the next calibration is due.

In order to change the date and time, proceed as follows:

- 1 Push the **MODE** function key.
- 2 Select **System > Settings > Time/Date**.
The time/date display appears showing the current date and time.

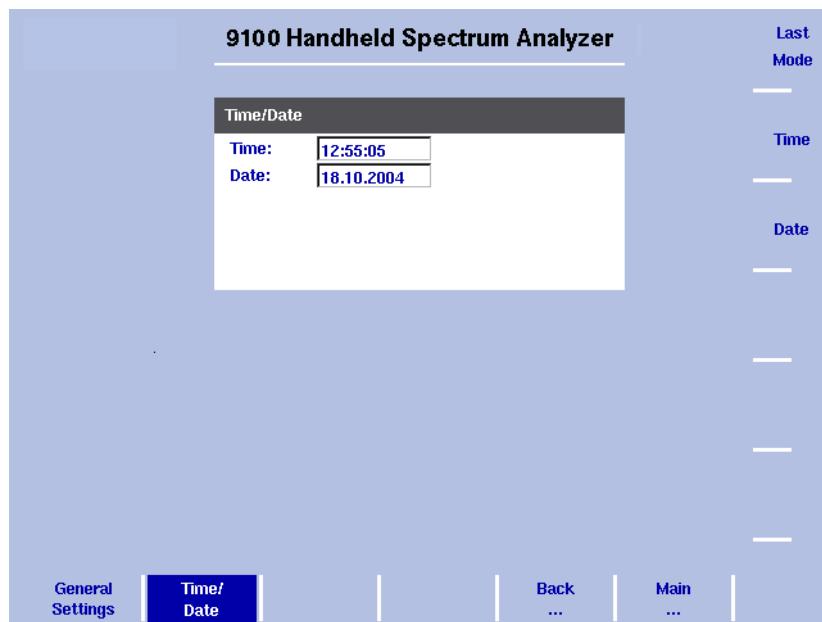


Figure 11 Time/Date menu

- 3 Press the **Time** softkey.
The time input field is active so you can move the cursor with the **LEFT/RIGHT** cursor keys behind a digit that needs to be changed, push the **BACKSPACE** key to erase it and enter a new digit.
- 4 Press the **Date** softkey.
The date input field is active so you can overwrite the old date with a new one or move the cursor with the **LEFT/RIGHT** cursor keys behind a digit that needs to be changed, push the **BACKSPACE** key to erase it and enter a new digit.
- 5 Press **ENTER** or another function key to confirm the entry.
The new date and time are shown on the Time/Date menu.

NOTE

These parameters are affected neither by a press on the **RESET** function key nor by a push on the **Back to Defaults** softkey.

Changing the baud rate on the RS-232 port

- 1 Push the **MODE** function key.
- 2 Select **System > I/O Config > RS 232 Config**.
The RS 232 Config menu is displayed (see [Figure 12](#)), showing the current RS-232 bit rate (or baud rate) and interface settings.
- 3 To change the data rate, push the **Baudrate** softkey and select a new rate with the **UP/DOWN** cursor keys.
The change takes effect immediately.

NOTE

This parameter is not affected by a press on the **RESET** function key but by a push on the **Back to Defaults** softkey.

Figure 12 RS 232 Configuration

NOTE

The described procedure for changing the baud rate applies to serial numbers 5004001 and higher.

Changing the IP address of the 9101

The IP address should be adapted to the address space in use in your environment and should be unique for each device on that network.

- 1 Push the **MODE** function key.
- 2 Select **System > I/O Config**
The TCP/IP Config menu is displayed, showing the current TCP/IP settings.

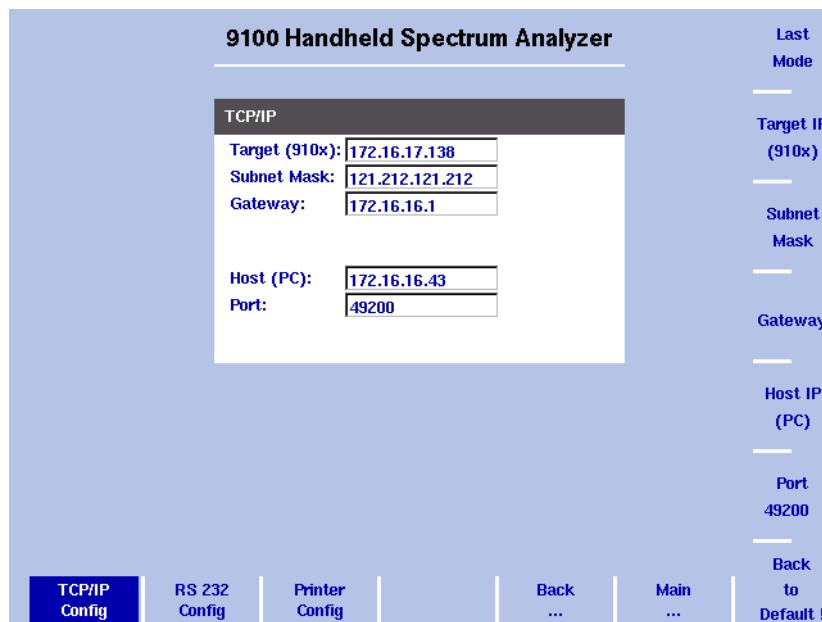


Figure 13 TCP/IP Configuration

- 3 Select **System > I/O Config**.
The port configuration display appears, showing the current TCP/IP settings.
- 4 To change the IP address of the 9101, press the **Target IP** softkey.
The address field is highlighted.
- 5 Overwrite the entire IP address or select a field with the **LEFT/RIGHT** cursor keys, enter a new IP address and press **ENTER**.
- 6 To change the subnet mask press the **Subnet Mask** softkey. The Subnet Mask field is highlighted.
- 7 Overwrite the entire subnet mask or select a field with the **LEFT/RIGHT** cursor keys, enter a new one and press **ENTER**.
- 8 To change the gateway press the **Gateway** softkey. The Gateway field is highlighted.
- 9 Overwrite the entire gateway or select a field with the **LEFT/RIGHT** cursor keys, enter a new one and press **ENTER**.
- 10 For the change to take effect, switch the 9101 off and then on again.
- 11 Ensure that your application on the PC addresses the 9101 using this IP address so that the two units can communicate with each other.

NOTE

The described procedure for changing the IP address of the 9101 applies to serial numbers 5004001 and higher.

Changing the IP address of the PC

For remote control of the 9101 Handheld Spectrum Analyzer from a PC, the IP address of that PC can be entered on the instrument.

- 1 Push the **MODE** function key.
- 2 Select **System > I/O Config**
The TCP/IP Config menu is displayed (see [Figure 13](#)), showing the current TCP/IP settings.
- 3 Select **System > I/O Config**.
The port configuration display appears, showing the current TCP/IP settings.
- 4 To change the IP address of the 9101, press the **Host IP** softkey.
The address field is highlighted.
- 5 Overwrite the entire IP address or select a field with the **LEFT/RIGHT** cursor keys, enter a new IP address and press **ENTER**.
- 6 Reboot the 9101 (that means, switch it off and on again) for the new settings to work.

NOTE

The described procedure for changing the PC's IP address applies to serial numbers 5004001 and higher.

Changing the IP port used by the 9101

When the 9101 Handheld Spectrum Analyzer is to be controlled remotely from a PC, the PC must address the remote control application within the 9101 with an IP port number. The 9101 uses a default of 49200 which can be changed easily as follows:

- 1 Push the **MODE** function key.
- 2 Select **System > I/O Config**
The TCP/IP Config menu is displayed, showing the current TCP/IP settings.
- 3 To change the IP port of the 9101, push the **Port** softkey.
The address field is highlighted.
- 4 Overwrite the entire IP address or select a field with the **LEFT/RIGHT** cursor keys, enter a new IP address and press **ENTER**.
- 5 Reboot the 9101 (that means, switch it off and on again) for the new settings to work.

The **Back to Default** softkey resets the parameter to its default value.

Configuring a printer

You can connect a printer for direct printing via the **±** key on the 9101's front panel.

- 1 Push the **MODE** function key.
- 2 Select **System > I/O Config > Printer Config**
The printer settings are displayed.

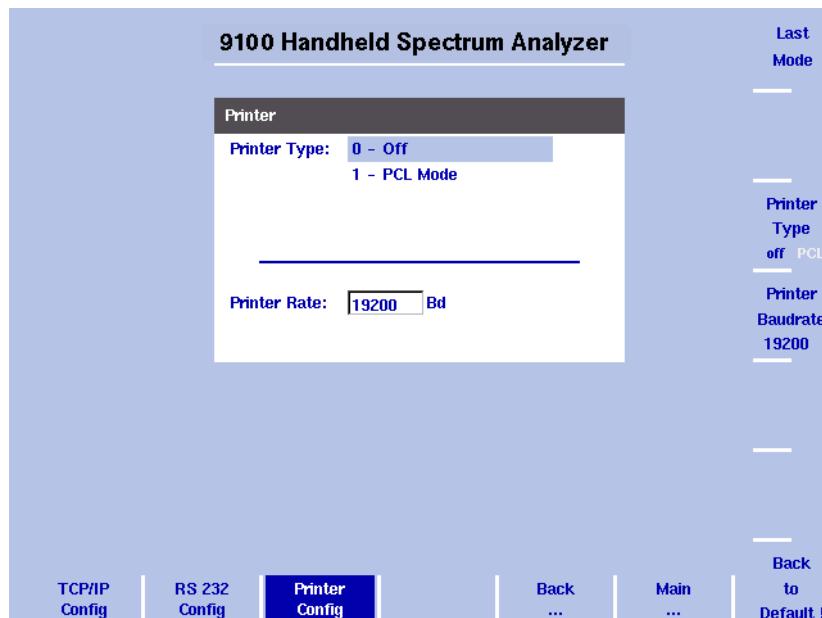


Figure 14 Printer Configuration menu

- 3 In order to configure a connected PCL 5 printer for direct printing press the softkey **Printer Type** and toggle it to PCL by pressing it until this option is highlighted.
- 4 In order to specify the baud rate of the printer press the **Printer Baudrate** softkey. The Printer Rate input field is highlighted. The default is 19200.

NOTE

Direct printing works with PCL 5 printers with integrated drivers. Pure GDI printers are not supported.

Selecting user interface colors

NOTE

The described procedure for changing the IP port used by the 9101 applies to serial numbers 5004001 and higher.

You can change the colors of some of the user interface elements in the Color Scheme menu. The available colors are shown in the color palette at the top of the display and in Table 12.

Table 12 Color palette in the 9101 user interface

Color number	Color
1	black
2	grey
3	blue
4	green
5	violet
6	yellow
7	red
8	brown

The colors of the traces, the grid and the limit lines can be modified as follows:

1 Push the **MODE** function key.

2 Select **System > Color Scheme**.

The color scheme display appears (see Figure 15), showing the current color settings.

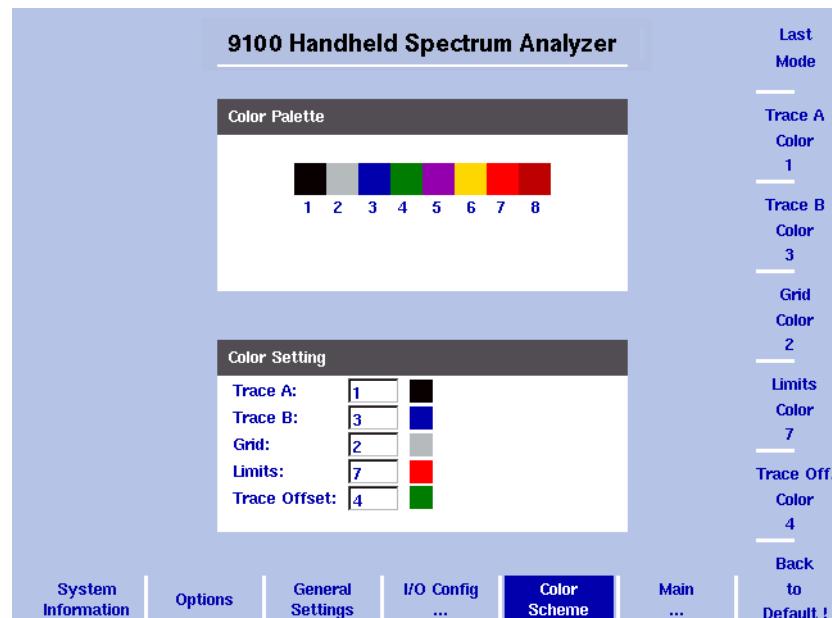


Figure 15 Color scheme menu

- 3 To change the color of a user interface element, push the appropriate softkey (Trace A, Trace B, Grid, Limits or Trace Offset Color).
The input field on the left is activated.
- 4 To select a new color, enter a number corresponding to the colors in the color palette and press **ENTER**, or use the **UP/DOWN** cursor keys to change the color.
The color field to the left of the input field changes according to the selection made.

- 5 Press the **Last Mode** softkey to return to the measurement screen.
The new color scheme takes effect immediately.

Working with stored settings

The 9101 Handheld Spectrum Analyzer provides the capability of storing all the parameters for a particular measurement, allowing to recall these parameters whenever the measurement shall be repeated under the same conditions, and this includes the measurement mode. A large number of parameter sets can be stored under different names that allow fast and easy identification; each parameter set name may consist of up to 11 characters.

In addition to using these files of parameter sets on the same 9101, you can also transfer them to a PC for backup, easy modification and amendment using a standard text editor, or for using the same parameters on multiple 9101 instruments. This is described in more detail in sections ["Working with settings" on page 180](#) and ["Managing files on the PC and on the 9101" on page 181](#).

Storing settings on the 9101

To store the current settings on the 9101, take the following steps:

- 1 Press the **RCL/STORE** function key.
The Trace Memory menu appears.
- 2 Select the **Settings** softkey.
The Settings Memory menu is displayed.
- 3 Press **Store Settings**.
An input field appears (see [Figure 16](#)).

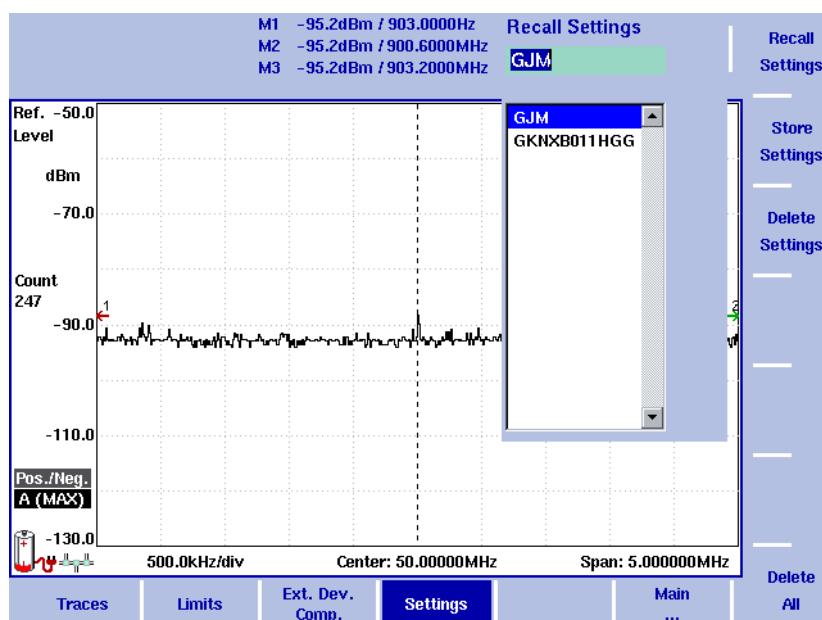


Figure 16 Recall Settings menu

- 4 Enter a new file name of up to 11 characters, and confirm with **ENTER**. The current parameter settings are stored in this settings file and can be recalled at any time.

Using previously stored settings

You can use settings previously stored in the memory of the 9101 by recalling the settings file.

- 1 Press the **RCL/STORE** function key.
The Trace Memory menu appears.
- 2 Select the **Settings** softkey.
The Settings Memory menu is displayed.
- 3 Press **Recall Settings**.
An input field and a file selection box appear.
- 4 Select the desired settings file using the **UP/DOWN** cursor keys or enter an existing file name, and confirm with **ENTER**. The current parameter settings are overwritten by those in the settings file and the measurement mode with the parameters stored in the file are assumed.

Restoring factory settings for all modes

In addition to the **RESET** function key (see "Using the front panel" on page 12), which resets the mode currently selected to its factory default settings, the 9101's Mode menu offers the Factory Settings function. This function resets all modes to their factory default settings and returns you to the spectrum analysis mode. In order to restore the factory settings for all modes proceed as follows:

- 1 Press the **MODE** function key.
The Mode menu is displayed.
- 2 Press the **Factory Settings** softkey. The Factory Settings menu appears.
- 3 Press the **Preset All** softkey. A message will be displayed asking you to confirm that all modes should be reset.
- 4 Press **ENTER** to confirm the process. All modes will now be reset to their factory settings.

NOTE

This function is available for serial numbers 5004001 and higher.

Spectrum Analysis Operation

3

This chapter describes the instrument's functions that are specific to the spectrum analysis mode. Topics discussed in this chapter are as follows:

- ["Selecting the measurement mode" on page 46](#)
- ["Changing the frequency settings" on page 46](#)
- ["Selecting RBW, VBW and SWT" on page 49](#)
- ["Setting up the level parameters" on page 49](#)
- ["Changing the input impedance" on page 52](#)
- ["Applying special functions on the signal" on page 53](#)
- ["Setting up the trace" on page 56](#)
- ["Storing and loading traces" on page 63](#)
- ["Special measurement functions" on page 65](#)
- ["Viewing the spectrum analysis mode parameters" on page 69](#)

Selecting the measurement mode

The 9101 provides different measurement modes. To select spectrum analysis mode, proceed as follows:

- 1 Push the **MODE** function key.
The Mode menu appears.
- 2 Select **Spectrum Analysis**.
The Spectrum Analysis main menu appears.

Changing the frequency settings

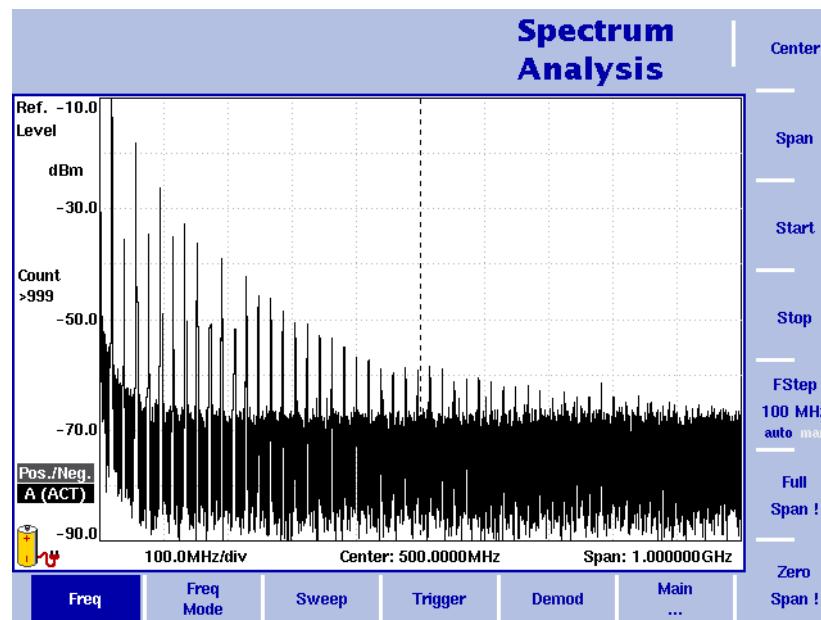


Figure 17 Frequency menu

There are different methods to set the frequency range to be measured; the range can be expressed by either the start and stop frequencies (i.e. first and last frequencies on the display), or by center frequency and span (i.e. the center and the frequency range), or by other combinations of center frequency, span, start and stop frequencies.

All four parameters are accessible in the **Freq** menu. On the main menu, however, only one of the combinations mentioned above is shown, depending on the parameter last entered.

NOTE

Changing a frequency parameter may affect an associated parameter.

Example: If you change the span to the maximum of 4 GHz, the start and stop frequencies are changed to 0 and 4 GHz, respectively.

Setting start and stop frequency

- 1 Push the **CENT** function key (or the **Freq** softkey in the main menu). The vertical softkeys include Start and Stop softkeys.
- 2 Push the **Start** softkey. An entry field appears, indicating the start frequency currently set and the step size for the **UP/DOWN** cursor keys.
- 3 Enter a new frequency using the numeric keys, the cursor keys and the **BACKSPACE** key.
- 4 Conclude the entry by pushing an enter key for the unit (**GHz** or **MHz**). If the start frequency entered is lower than the stop frequency, the horizontal axis will display the range from the new start to the stop frequency. If the new start frequency is higher than or equal to the stop frequency, the start frequency is used as the center frequency with zero span, i.e. the signal at the selected frequency will be shown in the time domain.
- 5 Push the **Stop** softkey and enter the frequency for the right end of the display.

You can also place softkeys for the start and stop frequencies available on the main menu by changing the frequency mode, see [page 47](#).

Setting center frequency and span

- 1 Push the **CENT** function key (or the **Freq** softkey in the main menu). The vertical softkeys include Center and Span. An entry field appears, indicating the center frequency currently set and the step size for the **UP/DOWN** cursor keys.
- 2 Enter a new frequency using the numeric keys, the cursor keys and the **BACKSPACE** key.
- 3 Conclude the entry by pushing an enter key for the unit (**GHz** or **MHz**).
- 4 Push the **Span** softkey and enter the frequency for the range from the left to the right end of the display.

You can also place softkeys for the center frequency and the span available on the main menu by changing the frequency mode, see section "[Changing the main menu for different frequency parameters](#)" below.

Changing the main menu for different frequency parameters

The main menu shows two softkeys for the definition of the frequency range on the display. Different methods exist to define the range as depicted above; you can configure these softkeys to one of the two allowable combinations as follows:

- 1 From the main menu, select **Freq > Freq Mode**.
- 2 Select the combination of softkeys that you want to see in the main menu (**Start/Stop** or **Center/Span**).
- 3 Return to the main menu by pushing the **Main ...** softkey. The main menu appears and displays the selected combination of keys.

Note that the description of the horizontal frequency axis changes with the selected parameter set.

Viewing the complete frequency band

Full
Span !

To change the frequency range to the full bandwidth supported by the 9101, proceed as follows:

- 1 From the main menu, push the **Freq** softkey.
The Frequency menu is displayed.
- 2 Push the **Full Span** softkey.
The leftmost frequency changes to 0 Hz and the rightmost frequency to 4 GHz.

Performing measurements in the time domain

Zero
Span !

Measurements on a selected center frequency can also be displayed in the time domain.

- 1 From the main menu, push the **Freq** softkey.
The Frequency menu is displayed.
- 2 Push the **Center** softkey and enter the desired center frequency; close the input field by selecting the appropriate unit with one of the enter keys.
- 3 Push the **Zero Span** softkey.
The horizontal axis becomes the time axis. The scale width is identical to the sweep time. See [Figure 18 on page 54](#) for an example.

Selecting the step size for the frequency input

FStep
100 kHz
auto man

The center, start and stop frequencies can be set by either entering a new value with the numeric keys, or by using the arrow keys (**UP**, **DOWN**) to increase or decrease the current setting. The step size for an arrow keypress can be either automatically selected by the 9101, or manually adjusted.

Manually setting the frequency step size

- 1 From the main menu, select **Freq**.
- 2 Push the **FStep** key.
The Freq Step entry field opens.
- 3 Enter a new frequency step value and close the entry field by pressing the appropriate enter key determining the unit (**GHz/DBM** for gigahertz, **MHz**, **dB/µs** for megahertz, **kHz/DBµV/MS** for kilohertz, or **ENTER** for hertz).
The auto/manual selection switches to manual and the selected frequency step size is displayed on the softkey.

Setting the frequency step size selection to automatic

- 1 From the main menu, select **Freq**.
- 2 Push the **FStep** softkey several times until the "auto" selection is highlighted.

Selecting RBW, VBW and SWT

The resolution bandwidth (RBW) is the 3 dB bandwidth of the IF filter for selecting the signal to be measured. The resolution bandwidth describes the ability of the spectrum analyzer to discriminate between adjacent signals of similar amplitude. Only signals spaced at a frequency of more than the RBW can be discriminated from one another.

The 9101 can be set to automatically select the resolution bandwidth, depending on the frequency span.

The video bandwidth (VBW) is the lowpass bandwidth over which several results for one frequency point are smoothed. The lower the video bandwidth, the smoother the signal curve and the less variations there are.

The 9101 can be set to select the video bandwidth automatically as a function of the resolution bandwidth.

The sweep time (SWT) determines how long it takes for a complete sweep over the measured frequency range (span).

The 9101 can be set to automatically select the sweep time, depending on RBW and VBW. If manually set, the sweep time should be selected long enough for the filtered signal to reach steady state. The 9101 will output an "UNCALibrated" warning if the sweep time is too low.

To set the resolution bandwidth, the video bandwidth or the sweep time, proceed as follows:

- 1 In the main menu, select the appropriate softkey (**RBW**, **VBW**, or **SWT**).
- 2 Enter the value and complete the entry with the appropriate enter key for the unit, select a new value with the help of the **UP/DOWN** cursor keys, or switch to **auto** to leave the setting to the 9101.

Changing between automatic and manual mode

Push the appropriate softkey (**RBW**, **VBW**, or **SWT**) several times until the desired selection (auto or manual) is highlighted.

Setting up the level parameters

The accuracy and the dynamic range between the measured signal and the noise floor depend on the proper setting of the level settings. These consist of the reference level and the attenuation.

The reference level basically determines the level at the top of the display. The vertical axis is divided into eight horizontal lines; you can adjust the scale (which defaults to 10 dB per line) to your preferences.

The attenuation setting can be coupled to automatically follow the reference level setting. For reference levels of -20 dBm and lower, the attenuation is set to 10 dB; the maximum attenuation is 50 dB.

Attenuation or gain due to external coupling can be compensated by frequency-dependent coupling factors, so that the displayed measurement values reflect the power at the device under test.

WARNING

The maximum input power level at the **RF IN** connector is 30 dBm (1 W). Higher input levels may result in serious damage of the instrument.

Setting the reference level

- 1 In the main menu, push the **Ref.** softkey or select **Level** followed by **Ref.** Alternatively, push the **REF** function key. The reference level input field opens.
- 2 Enter the new reference level either using the numeric keys, closing the input field with the appropriate enter key, or with the **UP/DOWN** arrow keys. The new reference level appears at the top of the vertical axis. The reference is based on the actually set output power.

Setting the hardware attenuation

- 1 In the main menu, push the **Attenuation** softkey. The Attenuation input field opens.
- 2 Enter a new attenuation value in the range from 0 to 50 dB (in 10 dB steps) and close the input field with one of the enter keys, or use the **UP/DOWN** arrow keys to select the attenuation value in the range 10 to 50 dB. If the attenuation value is changed, the attenuation option will change to "manual".

NOTE

The attenuation value of 0 dB can be set only with the numeric keys to avoid accidental deactivation. The 0 dB setting should be selected carefully because too high input levels at the input may damage the instrument.

NOTE

For precision measurements, the input level subtracted by the attenuation should not exceed -23 dBm.

Changing the vertical scale

The scale for the vertical axis (power) can be changed in the range from 1 to 20 dB per division (vertical line in the displayed grid) in 1-3-5 steps as follows:

- 1 From the main menu, select **Level**.
- 2 Push the **Scale** softkey. The Scale input field opens.
- 3 Select a new scale by entering a new number of dB per division numerically and pressing the **ENTER** or **MHz/DB/μs** key, or by pushing the **UP/DOWN** cursor keys.

Selecting the level unit for input and output

- 1 In the main menu, select **Level > Units**.
- 2 You can use logarithmic or linear units. In order to toggle the display between logarithmic and linear units press the **Unit** softkey in the lower right corner of the display and select log or lin.
- 3 You can now choose between the following units via the Unit softkey in the upper right corner of the display.
Logarithmic units: dBm, dB μ V, dBmV and dBV
Linear units: V, mV, μ V, mW, μ W.

Compensating gains and losses

If the device under test is connected to the 9101 Handheld Spectrum Analyzer via an amplifier or a device attenuating the signal, such as an antenna or a long cable, the measurement results are wrong by the gain or loss factor. This factor may be a constant or even frequency-dependent.

To view the correct measurement results, the gain or loss can be compensated. The 9101 can even compensate a frequency-dependent factor; a correction curve or table can be entered on an external PC using the 9100 Data Exchange Software and loaded to the 9101. The section "["Defining and loading external coupling parameters" on page 178](#) explains this part in more detail.

Enabling external device compensation

Once correction values are stored in the 9101, they can be selected and activated as follows:

- 1 From the main menu, select **Level > Ext. Dev. Memory**.
- 2 Push **Recall Ext. Dev. Comp.**
A pull-down menu appears with a list of names for the compensation tables available in the 9101.
- 3 Select a compensation table using the **UP/DOWN** cursor keys and confirm your choice by pressing **ENTER**.
Compensation is still off, but the 9101 changes automatically to the Level menu.
- 4 Push the **Ext. Dev. Comp.** softkey until "on" is highlighted.
The text "Ext. Dev.", together with the name of the file loaded, appears on the upper left-hand corner of the results display.

NOTE

If a file was selected previously, steps 1 thru 3 can be omitted. In this case, select **Level** and continue with step 4.

Turning external device compensation off

- 1 From the main menu, select **Level**.
- 2 Press **Ext. Dev. Comp.** until "off" is highlighted.
The text "Ext. Dev." to the left of the results display disappears.

Deleting files for external device compensation

You can delete files containing compensation parameters as follows:

- 1 From the main menu, select **Level > Ext. Dev. Memory**.
- 2 a. To delete an individual compensation file from the 9101 memory, push **Delete Ext. Dev. Comp.** Select a file name and press **ENTER**.
The compensation file is deleted from the list. Note that there will be no warning; once you have selected and requested a file to be deleted, this will occur immediately.
- b. To delete all the compensation files from the 9101, push **Delete All** and confirm with **ENTER**.
All compensation files are deleted.

Changing the input impedance

Most RF applications are using an impedance of 50Ω ; other applications such as cable TV apply 75Ω . The 9101 is designed with an input impedance of 50Ω ; it can, however, be used for testing a device with an impedance of 75Ω by using the software impedance switch. The measurement results from the 50Ω input are recalculated to fit the different impedance.

On the 9101, simply select the correct impedance value so that the 9101 can translate the internal measurement values to the power before the coupler.

- 1 Connect the device under test to the 9101 Handheld Spectrum Analyzer.
- 2 From the main menu, select **Level**.
- 3 In the vertical menu, select the impedance of the device, that means select **Impedance: 50 Ω** or **Impedance: 75 Ω** , respectively.
New measurement results are presented with the new impedance value taken into account. In addition, if the impedance is changed to 75Ω and the power had been displayed in dBm, the new measurements are shown in dB μ V. If the impedance is changed to 50Ω and the power had been displayed in dB μ V, the new measurements are shown in dBm.

NOTE

Signal reflections on the cable between the 50Ω and the 75Ω device affect the measurement accuracy of the 9101 Handheld Spectrum Analyzer. For more accurate results, Willtek recommends using an impedance converter; such a converter will cause attenuation affecting the results. This attenuation can be compensated as explained in section "[Compensating gains and losses](#)" on page 51.

Applying special functions on the signal

This section shows how the measurement can be triggered, how the number of measurements can be limited and how you can listen to the sound of the demodulated signal.

Using a trigger

The 9101 can either start signal analysis at a random point in time, or start the measurement when a given signal threshold is passed. Starting measurements depending on the actual signal level is only supported in zero span mode.

Selecting untriggered signal analysis

- 1 From the main menu push **Freq > Trigger**.
The Trigger menu appears.
- 2 Push the **Free Run** softkey.
The softkey is highlighted and the 9101 is ready for measurements at random times.

Selecting a trigger threshold in the RF signal

- 1 From the main menu push **Freq > Trigger**.
The Trigger menu appears.
- 2 Push the **Video** softkey.
The **Video** softkey is highlighted and an input field for the trigger level appears.

NOTE

The Video trigger is available in zero span mode only, otherwise the softkey description is grayed out.

- 3 Enter the trigger level (in dBm) and complete the entry by pushing either the **GHz/dBm** or the **ENTER** key.
The trigger threshold is displayed at the power axis; the symbol also indicates the slope (direction in which the signal passes the threshold to start the measurement).
- 4 If necessary, change the slope between positive and negative direction by pushing the **Slope** softkey.
The active slope is indicated at the power axis by the following symbol (see also [Figure 18](#)):

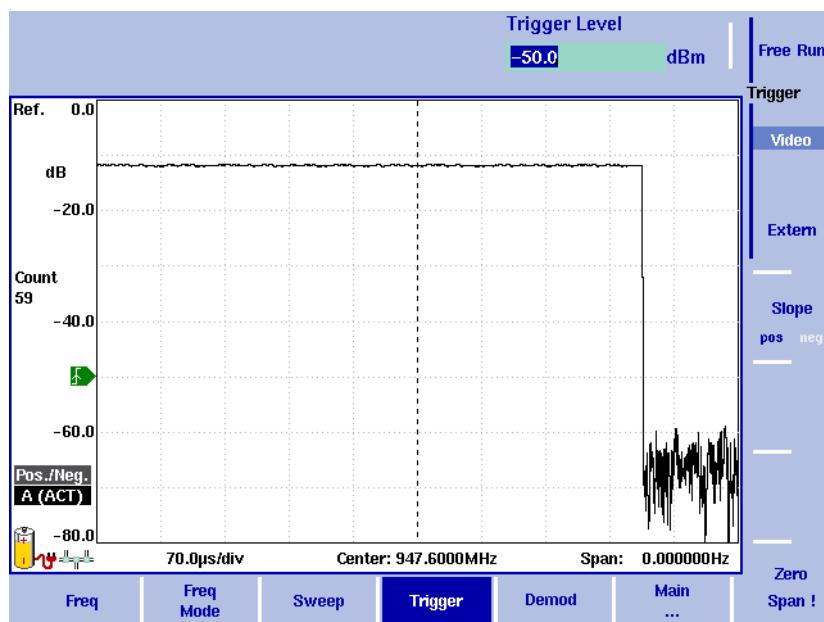


Figure 18 Triggered measurement (in the time domain)

Using an external trigger

NOTE

The external trigger function is available for serial numbers 5004001 and higher.

In order to use a TTL trigger signal generated by an external device, proceed as follows:

- 1 Connect the external device to the **Ext. TRIG.** connector on the top of the instrument.
- 2 In the the main menu, enter the Sweep menu by pushing **Freq > Trigger**. The Trigger menu appears.
- 3 Push the **Extern** softkey.
The softkey is highlighted.
After activating the external trigger the instrument waits to receive an impulse. When an impulse is detected on the external trigger entrance one sweep is performed. Afterwards the instrument waits for the next trigger event.

Performing a limited number of measurements

The 9101 can run measurements continuously or a defined number of times. Limiting the number of measurements can be useful for statistical analyses.

- 1 From the main menu, select **Freq > Sweep**.
The Sweep menu appears.
- 2 Select the trigger mode: Push **Cont.** for continuous measurements or **Single** for a limited number of measurements.
The selected trigger mode is highlighted.
- 3 To enter the number of measurements, push the **Single Count** softkey, enter a number in the range from 1 to 1000 and press **ENTER**.
If Trigger Mode is set to Single, the 9101 performs the defined number of measurements and enters Hold mode.
- To restart single-mode measurements, push the **HOLD/RUN** function key or the **Single** softkey.
- To stop a continuous measurement, push the **HOLD/RUN** function key. Push it again to resume measurements.

Demodulating an AM or FM signal

The 9101 has the ability to demodulate an AM (amplitude modulation) or FM (frequency modulation) signal and to output the signal at the built-in loudspeaker. The signal should have a signal strength of at least -50 dBm; the demodulation bandwidth is about 10 kHz.

The 9101 can be set to either demodulate one signal permanently, or to toggle between the different frequencies. When set to permanently demodulate one signal, the 9101 demodulates the signal at the center position.

When the 9101 is set to toggle between frequencies, it uses the marker frequencies (marker M1 is enabled if not already active). After performing and displaying a new measurement, the 9101 demodulates and outputs the received signal for a short duration. This duration is selectable in the range from 1 to 10 seconds. The 9101 demodulates the carrier at the marker position; the demodulated signal is output for the selected duration. If more than one marker is active, demodulation is resumed at the next marker frequency and so on until a piece of the signal at all active markers has been demodulated. The process starts anew with a new measurement.

The speaker volume can be selected as a percentage of the speaker's maximum capacity.

- 1 Set a marker to the center frequency of the signal to be demodulated (see section ["Setting up the trace" on page 56](#)).
- 2 From the main menu, select **Freq > Demod**.
The Demodulation menu appears.
- 3 Select the demodulation method (**AM**, **FM**, or **Off**).
The selected method is highlighted.
- 4 Choose between permanent demodulation and intermittent demodulation at multiple markers by pressing the respective **Demod** softkey.

- 5 If demodulation at marker is selected, you can change the duration of the output of the demodulated signal:
 - Push the **Duration** softkey.
The Demod Duration input field opens.
 - Enter the new duration using the numeric keys. Conclude the entry with a push on one of the enter keys with the appropriate unit: push **KHz**/
dB μ V/MS for milliseconds or **ENTER** for seconds.
- 6 To adjust the speaker volume, push the **Volume** softkey, enter a new volume level from 0 to 100% and press **ENTER**.

Setting up the trace

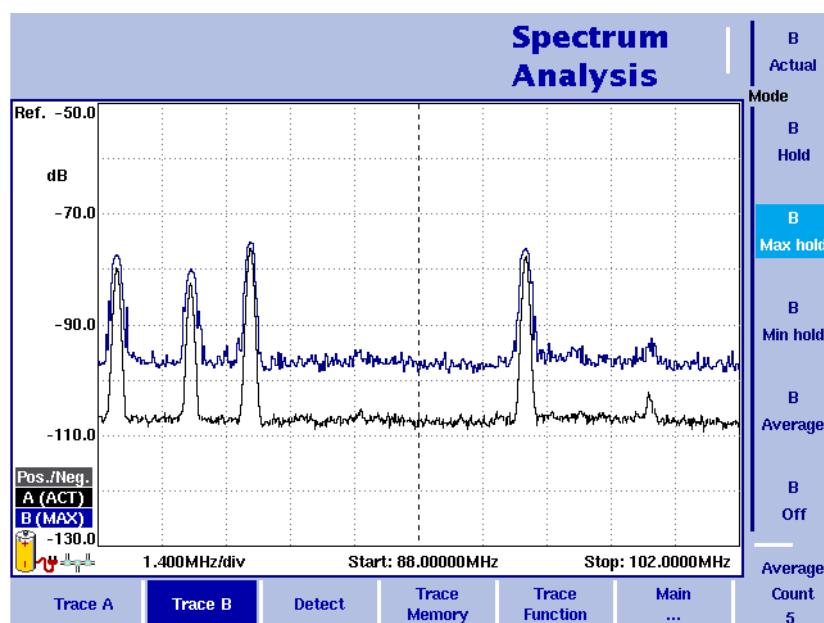


Figure 19 Example of two traces

The trace functions provide different views of the measurements, for example the actual measurement or an average over the last couple of measurements. You can even select two different views of the measurement. Another possibility is to compare the actual measurement with an older measurement which has been stored in the 9101 and loaded to one of the trace views (see section "Storing and loading traces" on page 63).

The 9101 samples many measurements for each frequency point. With the detector functions, you can define the method to select which of the samples is displayed.

Selecting the trace mode

The 9101 has five different modes to display a trace:

- In actual mode, the 9101 shows a complete new measurement in each trace. Subsequent traces are independent of each other.

- In hold mode, the last measurement is kept on the display; measurements continue but are not displayed.
- In max hold mode, the 9101 takes new measurements and, for each frequency point, compares the new measurement with the previous result. If the new measurement value is higher than the previous result, the new measurement value becomes the new result value; otherwise the old result value is kept. This way, the highest result since the start of the Max hold measurement (or a parameter change) is kept and displayed.

- Similarly, in min hold mode, the 9101 takes new measurements and compares the new measurement with the previous result. If the new measurement value is lower than the previous result, the new measurement value becomes the new result value; otherwise the old result value is kept. This way, the lowest result since the start of the Min hold measurement (or a parameter change) is kept and displayed.
- In average mode, the new measurement and previous ones are averaged for each frequency point displayed. The 9101 uses a recursive algorithm for averaging.

To select whether you want to view an actual measurement, stop and hold the last measurement, see the lowest or highest data for each frequency or an average value, proceed as follows:

- 1 In the main menu, select **Trace**.
- 2 Select the trace you want to modify (**Trace A** or **Trace B**) using the horizontal softkeys.
- 3 Select the trace mode with the vertical softkeys (**Actual**, **Hold**, **Max hold**, **Min hold**, **Average**).
The trace mode is shown at the left-hand side of the vertical axis, e.g. **A (ACT)**.

NOTE

For fastest valid results it is advisable to briefly activate the actual mode before selecting any other mode.

NOTE

When the trace is on hold, the measurement and failure counters continue counting. A second trace, if active, continues updating.

Turning the second trace on and off

You can define two different trace views, e.g. one with the actual values and one with the maximum values. While the first view (Trace A) is always active, the second can be switched off. The functions of turning Trace B on or off and selecting the trace mode are combined as follows:

- 1 From the main menu, select **Trace > Trace B**.
- 2 To turn trace B on, select the trace mode (**Actual**, **Hold**, **Max hold**, **Min hold**, or **Average**). To turn trace B off, select **Off**. If activated, the trace mode is displayed left to the vertical axis, e.g. **B (MAX)**.

Subtracting trace B from trace A

If you have used two different trace views as described above, you can show the difference between trace A and trace B by subtracting trace B from trace A as follows:

- 1 In the Trace menu select the softkey **Trace Function** followed by the softkey **Subtract A – B → A**.
- 2 Select **on** to subtract trace B from trace A. On the left-hand side of the result area the term "Subtract" will now be displayed to indicate that a mathematical function is being performed.
- 3 The result is displayed in trace A.

NOTE

If trace A is on Hold, this function is not available and thus the **Subtract A – B → A** softkey is greyed out.

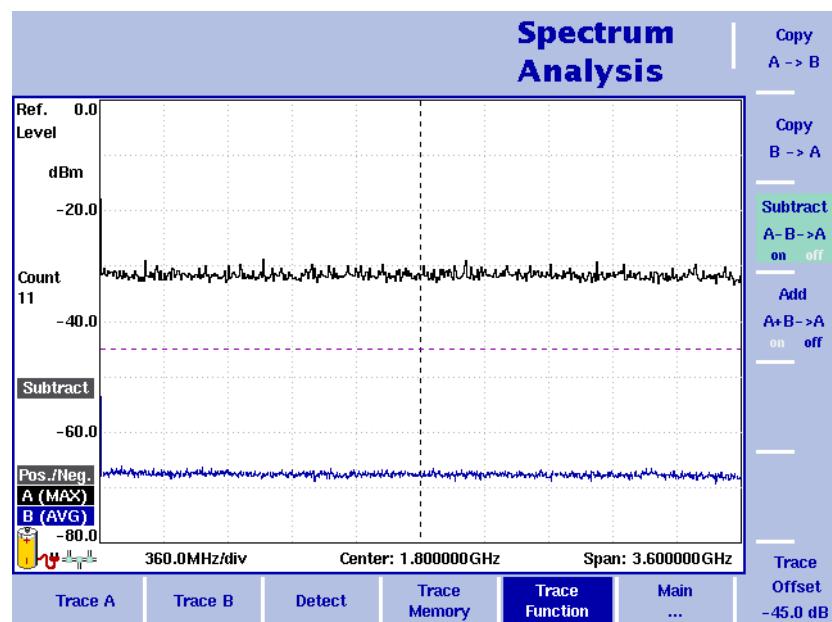


Figure 20 Subtract A – B → A on

Adding trace B to trace A

NOTE

This function is available for serial numbers 5004001 and higher.

If you have used two different trace views, you can also show the sum of trace A and trace B by adding the two traces as follows:

- 1 In the Trace menu select the softkey **Trace Function** followed by the softkey **Add A + B → A**.
- 2 Select **on** to add B to trace A. On the left-hand side of the result area the term "Add" will now be displayed to indicate that a mathematical function is being performed.
- 3 The result is displayed in trace A.

Defining the number of measurements for averaging

When the trace mode is set to averaging, it may be useful to adjust the number of measurements over which the 9101 averages the results. The average count value that can be defined in the Trace menus applies to both traces alike.

The 9101 uses a recursive algorithm in which a new result is added to the older averages with a weighting factor; the description below indicates how to change this weighting factor.

- 1 Enter the Trace menu (select **Trace > Trace A** or **Trace B** from the main menu).
- 2 Push the **Average Count** softkey.
The Average input field opens.
- 3 Enter the number of measurements over which to average the results, in the range from 2 to 128.
- 4 Press **ENTER**.

Selecting the detection method

For each new measurement, the 9101 selects one or two values from a number of measurements for each frequency value. The method is user-definable; the following methods are available (see also [Figure 21](#)):

- Positive/negative peak: Both the largest and smallest values are taken and displayed as a vertical bar.
- Positive peak: Only the largest value is displayed.
- Negative peak: The smallest value is shown.
- Sample: A sample measurement value is picked.
- If the 9132 RMS Detector Option is installed and activated on your 9101, the root mean square detector showing the RMS-effective level of the measured signal is also available. If the 9132 RMS Detector Option is not installed on your instrument, the RMS detector will be greyed out.

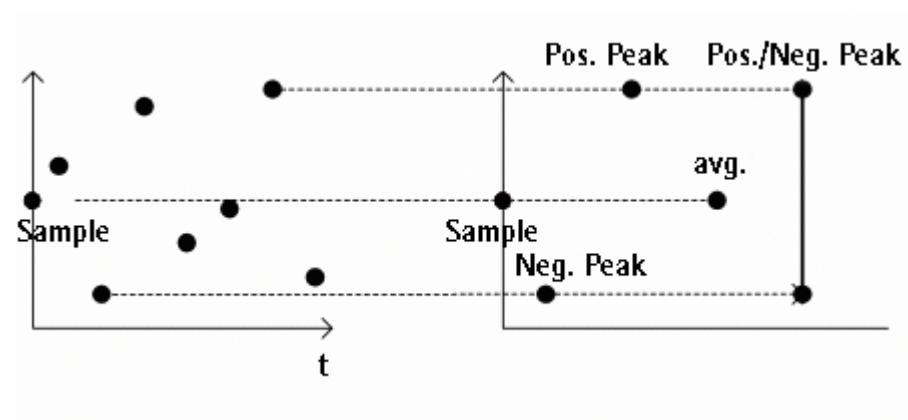


Figure 21 Trace detectors

The detection method applies to both traces. Select the detection method as follows:

- 1 From the main menu, select **Trace > Detect**.
- 2 Select the trace method from the Detector section of the vertical softkeys. The selected detection method is indicated at the left-hand side of the display.

Copying traces inside the 9101

You can copy an actual measurement from trace A to trace B or vice versa; this way you can keep the last measurement results on the screen and at the same time continue measuring or change the settings of the 9101 Handheld Spectrum Analyzer. The previous results in the target trace will be erased; the target trace will assume hold mode.

To copy the measurement data from one trace to another, proceed as follows:

- 1 From the main menu, select **Trace > Trace Function**.
- 2 To copy the measurement results in trace A to trace B, press **Copy A → B**. To copy results from trace B to trace A, press **Copy B → A**.

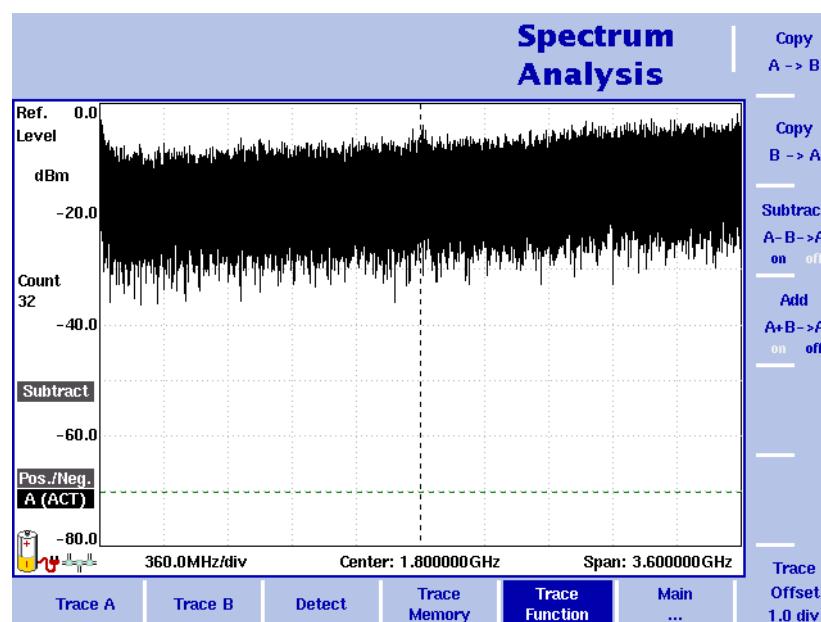


Figure 22 Trace Function menu

NOTE

If you first press **Copy A → B**, then **Copy B → A** (or vice versa), both traces will display the same results and will be in hold mode.

Storing and loading traces

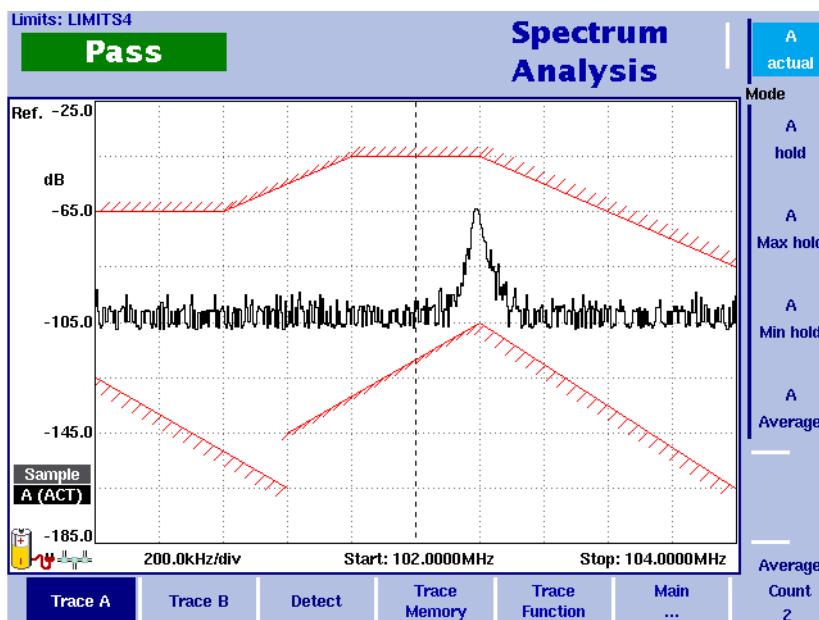


Figure 23 Trace A menu

The 9101 provides the capability to store up to 99 traces in the 9101 and load them again at random. The stored trace can then be examined or compared to a recent measurement. In addition, stored traces can also be transferred to a PC using the 9100 Data Exchange Software which is delivered with the 9101. For details on the software refer to [Chapter 8 "9100 Data Exchange Software"](#).

Storing a trace

You can store either trace A and trace B. Any trace can be stored under a name with up to 11 characters. The procedure to enter text in alphanumerical input fields is explained in section ["Entering numbers and text" on page 22](#). Note that along with the trace, the instrument settings such as frequency range, level range and markers are stored.

- 1 From the main menu, select **Trace > Trace Memory**.
- 2 Push either **Store Trace**.
An input field opens, allowing you to enter a name for the trace. Below the input field, a list of existing traces is indicated.
- 3 Enter a name for the trace. To use a modified trace name, you can move the cursor to a suitable trace name with the **UP/DOWN** cursor keys. The selected trace name also appears in the input field; use the **LEFT/RIGHT** cursor keys to move the cursor to the appropriate position within the trace name to enter additional characters or delete existing ones.
- 4 Confirm your choice by pressing **ENTER**.
The input field closes and the trace is stored under the selected name.

Reusing a trace name

You cannot overwrite an existing trace using the same trace name. If you want to reuse a trace name, you will have to delete the old trace first.

Reloading a trace

- 1 From the main menu, select **Trace > Trace Memory**.
- 2 Push **Recall Trace**.
An input field opens, allowing you to enter the trace name. Below the input field, a list of existing traces is indicated.
- 3 Enter the name of the trace to load, or choose one with the **UP/DOWN** cursor keys.
- 4 Confirm your choice by pressing **ENTER**.
The input field closes and the trace is displayed.

NOTE

Along with the trace, the 9101 also loads the settings that were used when the trace was saved. These will overwrite the current settings such as frequency range, reference level and markers.

Deleting a trace

Stored traces can be deleted. Note that there will be no warning; once you have selected and requested a file to be deleted, this will occur immediately.

- 1 From the main menu, select **Trace > Trace Memory**.
- 2 Push **Delete Trace**.
An input field for the name of the trace to be deleted appears, together with a trace selection box.
- 3 Select the trace to be deleted using the **UP/DOWN** cursor keys. Alternatively, enter the trace name with the numeric keys.
- 4 Confirm your choice by pressing **ENTER**.
The trace is deleted from the trace list.
- 5 Select another trace for deletion, or press **ESCAPE** to leave the entry field and the trace selection box.

Deleting all traces

Instead of deleting traces individually, all traces can be deleted in one step. You will be asked to confirm this step.

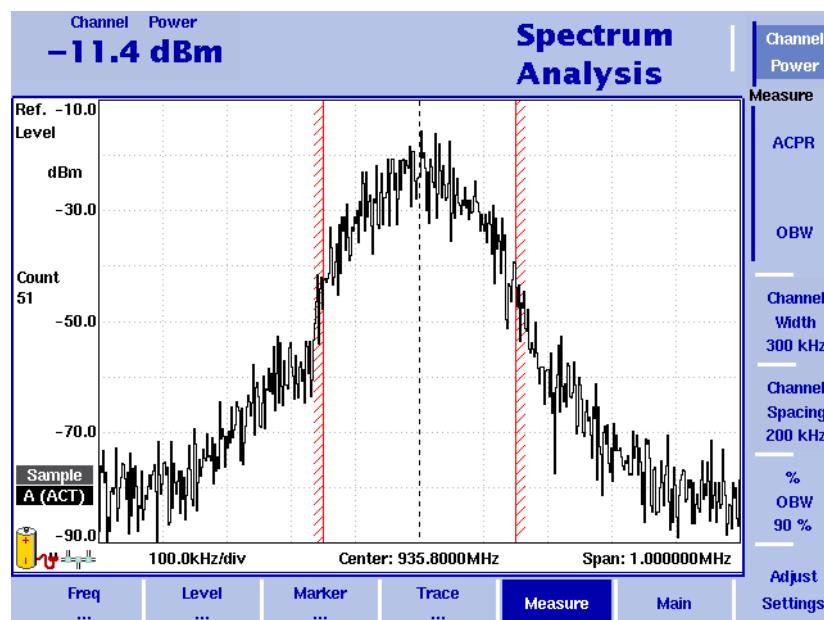
- 1 From the main menu, select **Trace > Trace Memory**.
- 2 Press **Delete All**.
A query appears, asking you to confirm your selection.
- 3 Press **ENTER** to have all traces deleted.
The query disappears. All traces are deleted.

Storing and loading instrument settings

To store or load the instrument settings including frequency range, level setting and markers, proceed as described in sections "Storing a trace" and "Reloading a trace".

Special measurement functions

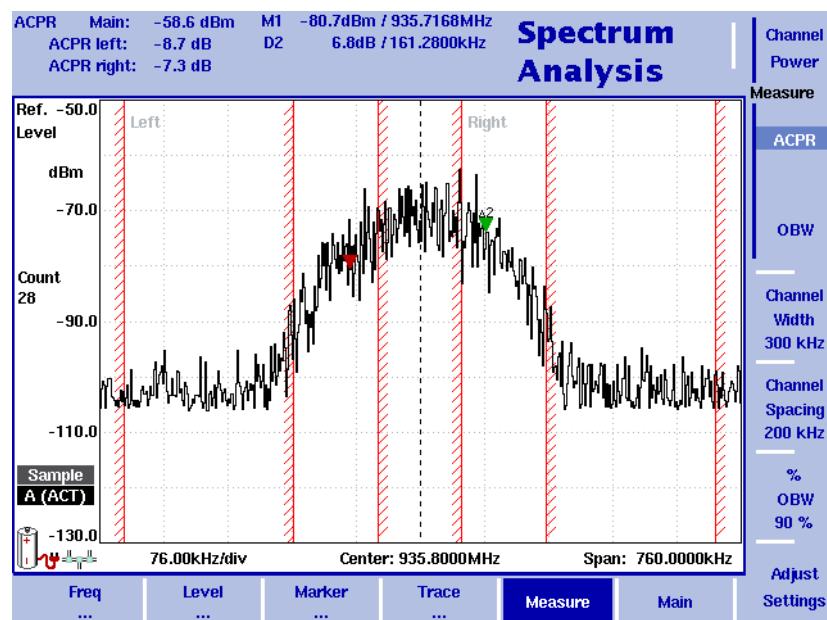
Within spectrum analysis mode, three different frequency-selective types of power measurements are supported:


- Channel power
- Adjacent channel power ratio (ACPR)
- Occupied bandwidth (OBW)

These are similar to the measurement types in channel power mode (see chapter "Channel Power Operation" on page 71), without the restrictions that the channel power mode poses with predefined parameters such as span and resolution bandwidth.

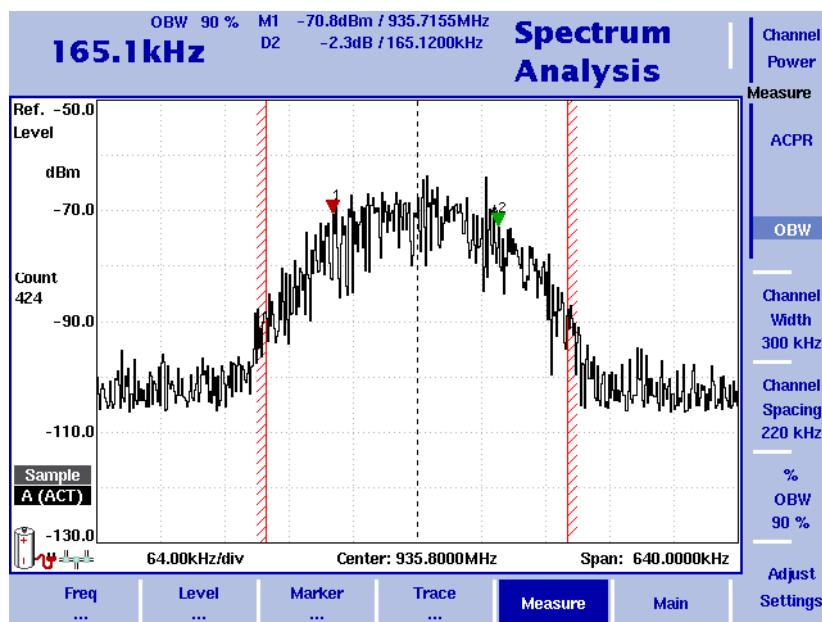
Channel power

This measurement includes the power of the selected channel. A channel is defined by center frequency and channel width (not the span in this case); see "Changing the channel width" on page 68.


The 9101 displays the numerical result of the channel power measurement on the top-left. The measured bandwidth is indicated graphically with bandwidth boundaries shown in red.

Adjacent channel power ratio (ACPR)

ACPR is the relation between the power transmitted in a neighboring (upper and/or lower) channel and that in the communication channel used. The measurement can be used to assess the quality of the modulator and the transmitter. The higher the result, the worse the transmitter because transmission in other channels may interfere with another ongoing communication.


The 9101 determines the adjacent channels by the channel width and channel spacing input parameters (see sections ["Changing the channel spacing"](#) and ["Changing the channel width" on page 68](#)). It displays the numerical results of the adjacent channel power ratio measurements for the left (lower) and right (upper) channels on the top-left. The measured bands are indicated graphically with bandwidth boundaries shown in red.

Occupied bandwidth (OBW)

The occupied bandwidth identifies the frequency range into which a given percentage of the signal power falls. The frequency range is not necessarily symmetric around the center frequency but is selected so that the bandwidth to hold a certain user-defined OBW percentage is minimized. See section ["Changing the occupied bandwidth percentage" on page 68](#).

OBW is indicated as an absolute value in the upper left-hand corner of the display, together with the OBW percentage; marker A1 and delta marker DA2 are assigned the lower and upper frequencies characterizing the frequency range. The power is measured over three times the normal channel bandwidth. The red boundary indicators mark the normal channel bandwidth as selected in the Channel System menu.

NOTE

If the selected resolution bandwidth is high and the occupied bandwidth very low, there may be rare cases in which all the power for the occupied bandwidth is mapped to one point in the spectrum display. In such a case, the 9101 displays "N/A" (not available) instead of the bandwidth, and the markers usually indicating the bandwidth boundaries are invisible.

Increase the occupied bandwidth or decrease the resolution bandwidth to receive results.

Selecting the measurement type

To select the type of measurement within spectrum analysis mode, proceed as follows:

- 1 From the Spectrum Analysis main menu, select **Measure**.
- 2 Select a measurement type using the vertically aligned softkeys in the **Measure** section.

The numerical result for the selected measurement appears in the upper left-hand corner of the display.

Switching special measurement functions off

To return to normal spectrum analysis measurements without special measurement functions, simply press the softkey of the selected measurement type again. This will deactivate the special measurements.

Changing the channel width

The channel width is the bandwidth which the transmission is expected to occupy. It can be set for channel power and ACPR measurements as follows:

- 1 From the Spectrum Analysis main menu, select **Measure**.
- 2 Press **Channel Width**, enter a new value and press the respective enter key for the unit.
The new measurement bandwidth for channel power and ACPR is displayed with the softkey.

Changing the channel spacing

The channel spacing is distance in frequency between two adjacent channels. It can be set for the ACPR measurements as follows:

- 1 From the Spectrum Analysis main menu, select **Measure**.
- 2 Press **Channel Spacing**, enter a new value and press the respective enter key for the unit.
The new channel spacing for ACPR is displayed with the softkey.

Reading the channel power

In addition to the display elements explained on [page 12](#), the channel power mode also includes a large display of the channel power, along with the channel, resolution bandwidth and sweep time. Please see the graphs on [page 65](#) and the following for typical measurements.

Changing the occupied bandwidth percentage

OBW measurements identify the frequency range in which a certain percentage of the transmit power falls. The percentage value can be changed as follows:

- 1 From the Spectrum Analysis main menu, select **Measure**.
- 2 Press **% OBW** and enter a new percentage value in the range from 5 to 99.
- 3 Push **ENTER** to close the input field.
If the OBW measurement type is selected, the new OBW percentage value is indicated in the upper left-hand corner of the display.
The 9101 recalculates the frequency range based on the new percentage value.

Changing general analyzer parameters

For the channel power, ACPR and OBW measurements within the spectrum analysis mode, the general settings such as center frequency, span, resolution bandwidth, can be changed as usual. A single-button approach to adjusting span, resolution bandwidth, video bandwidth, detector and trace mode is described below.

- 1 From the Spectrum Analysis main menu, select **Measure**.
- 2 Press **Adjust Settings**.
Resolution bandwidth and video bandwidth are automatically set to optimum values (automatic mode). The trace detector is set to sample and the trace mode is set to actual.
If channel power measurements are selected, the span is set to 120% of the selected channel width. For ACPR measurements, the span is adjusted to $1.2 \times \text{channel width} + 2 \times \text{channel spacing}$. The OBW span is three times the channel width.

Viewing the spectrum analysis mode parameters

You can get an overview of all parameters set for this mode in the Parameter Window. To view the parameters, press the **PARAM** function key. To close the Parameter Window and return to the menu you opened it from, press the **ESCAPE** function key, the **Exit** softkey or the **PARAM** function key. To close the parameter page and change to the relevant main menu press the **Main** softkey.

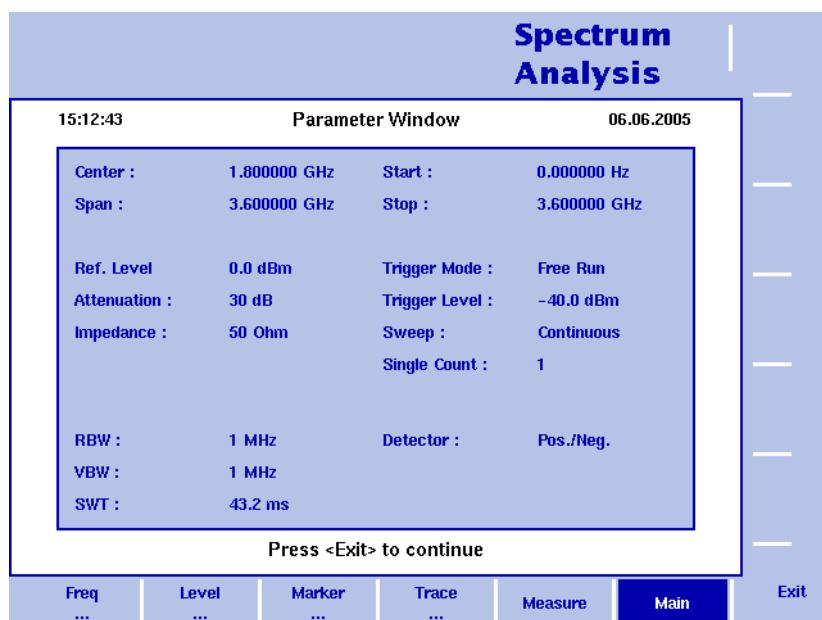


Figure 24 Spectrum analysis mode parameters

Channel Power Operation

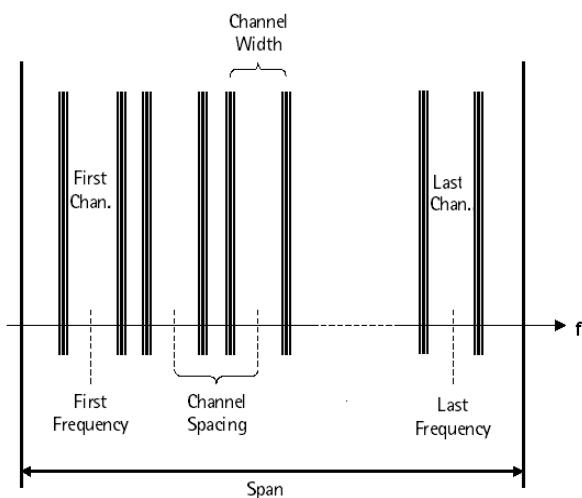
4

This chapter describes the instrument's functions in channel power measurement mode. Topics discussed in this chapter are as follows:

- ["About the channel power mode" on page 72](#)
- ["Selecting the measurement mode" on page 75](#)
- ["Operating in channel power mode" on page 76](#)
- ["Reading the channel power" on page 77](#)
- ["Changing the occupied bandwidth percentage" on page 77](#)
- ["Working with communication systems and frequency settings" on page 77](#)
- ["Setting up the level parameters" on page 80](#)
- ["Changing the input impedance" on page 83](#)
- ["Setting up the trace" on page 84](#)
- ["Storing and loading traces" on page 89](#)
- ["Viewing the channel power mode parameters" on page 91](#)

About the channel power mode

The 9101 offers different measurement modes, e.g. spectrum analysis and channel power measurements. The channel power mode allows you to measure the radiated power within a certain frequency band with a single button press. This mode reduces the complexity of all the setup possibilities for defined communication systems. Several communication systems are predefined in the 9101 or can be downloaded from a PC using the 9100 Data Exchange Software; see section ["Managing communication systems for channel power measurements" on page 179](#) for more details.

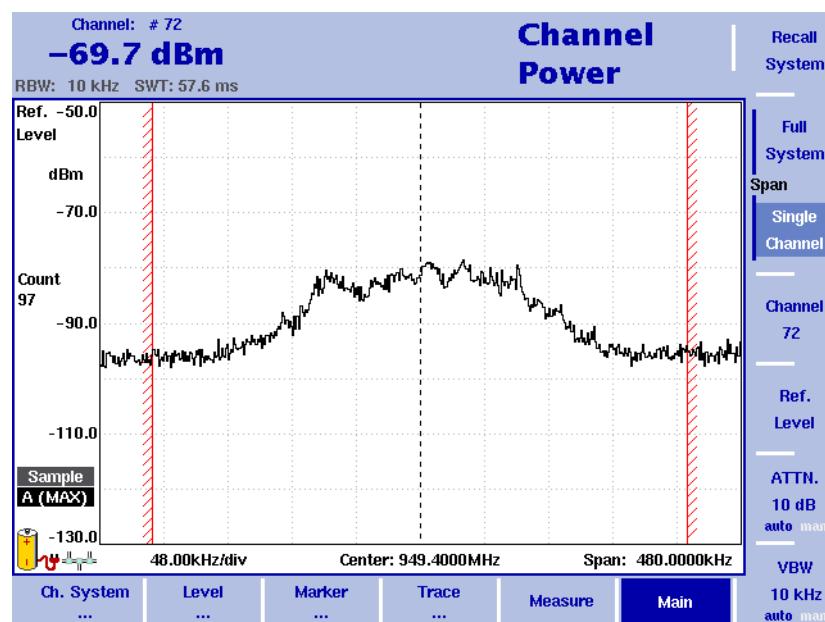

Within channel power mode, three different frequency-selective types of power measurements are supported, for details on selecting the measurement type refer to ["Selecting the measurement mode" on page 75](#):

- Channel power
- Adjacent channel power ratio (ACPR)
- Occupied bandwidth (OBW)

These measurement types are available both in channel power and in spectrum analysis mode. However, in contrast to the spectrum analysis mode, which looks at the power level at a certain frequency, the channel power mode uses a system approach. A system consists of several channels, each channel has a unique channel number assigned to it. Within a system the channels have the same bandwidth and channel spacing. Depending on the system the channels may overlap, follow each other directly or be separated by spaces.

In order to distinctly specify a system the following parameters have to be set on the 9101:

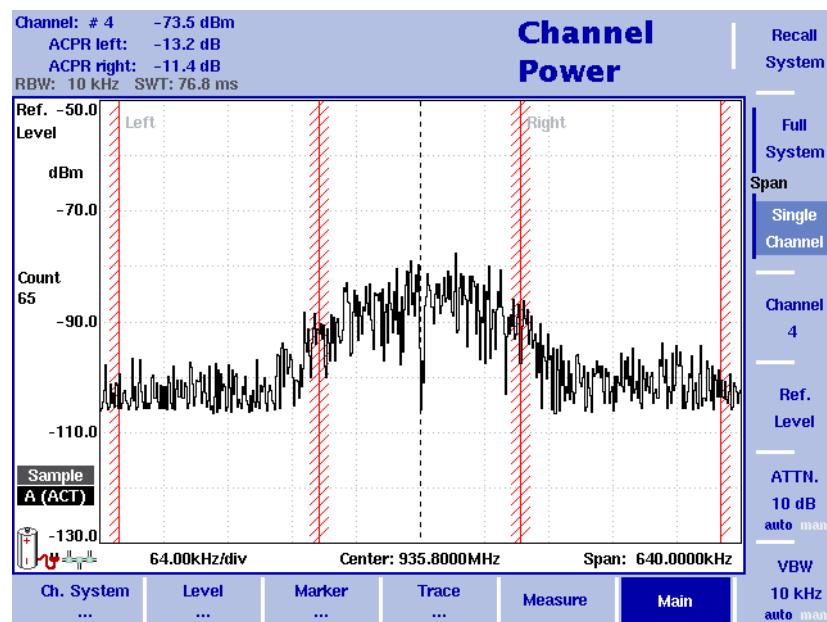
- First channel
- Last channel
- Channel width
- Channel spacing
- First frequency



You can define systems and store them on the 9101. However, you can also make use of predefined systems available on the instrument. For a complete listing of the communication systems preinstalled on the instrument refer to ["Preinstalled systems on the 9101" on page 203](#).

Channel power

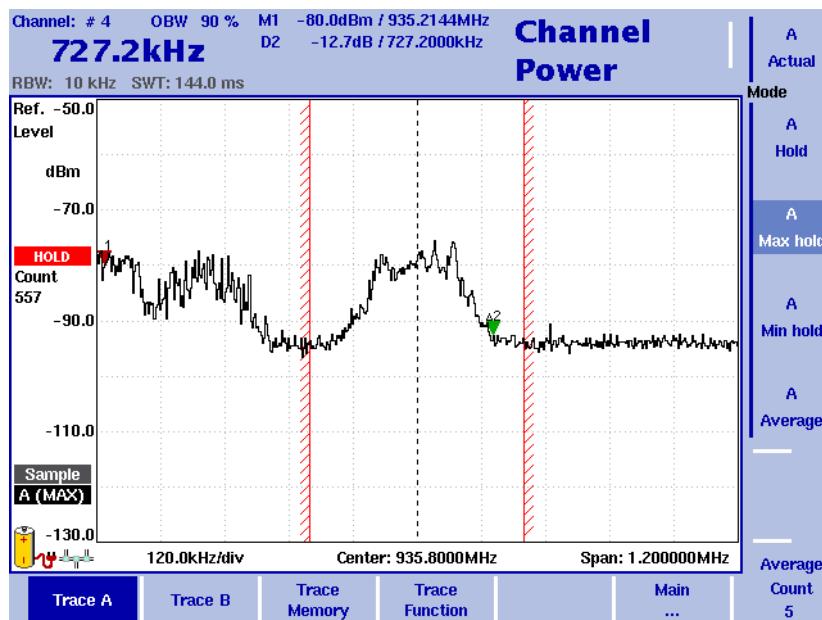
This measurement includes the power of the selected channel. The channel can be selected in the main menu whereas parameters like channel width (the measurement bandwidth) and channel spacing can be viewed and changed in the Channel System menu.


The 9101 displays the numerical result of the channel power measurement on the top-left. The measured bandwidth is indicated graphically with bandwidth boundaries shown in red.

Adjacent channel power ratio (ACPR)

ACPR is the relation between the power transmitted in a neighboring (upper or lower) channel and that in the channel used for communication. The measurement can be used to assess the quality of the modulator and the transmitter; the higher the result, the worse the transmitter because transmission in other channels may interfere with another ongoing communication.

The 9101 displays the numerical results of the adjacent channel power ratio measurements for the left (lower) and right (upper) channels on the top-left. The measured bands are indicated graphically with bandwidth boundaries shown in red.



For further details on the selection and availability of the ACPR measurement type refer to ["Selecting the measurement mode" on page 75](#).

Occupied bandwidth (OBW)

The occupied bandwidth identifies the frequency range into which a given percentage of the signal power falls. The frequency range is not necessarily symmetric around the center frequency but is selected so that the bandwidth to hold a certain user-defined OBW percentage is minimized. See section ["Changing the occupied bandwidth percentage" on page 77](#).

OBW is indicated as an absolute value in the upper left-hand corner of the display, together with the OBW percentage; marker A1 and delta marker DA2 are assigned the lower and upper frequencies characterizing the frequency range. The power is measured over three times the normal channel bandwidth. The red boundary indicators mark the normal channel bandwidth as selected in the Channel System menu.

NOTE

If the selected resolution bandwidth is high and the occupied bandwidth very low, there may be rare cases in which all the power for the occupied bandwidth is mapped to one point in the spectrum display. In such a case, the 9101 displays "N/A" (not available) instead of the bandwidth, and the markers usually indicating the bandwidth boundaries are invisible.

Increase the occupied bandwidth to receive results.

Selecting the measurement mode

To select the channel power mode, proceed as follows:

- 1 Push the **MODE** function key.
- 2 Select the **Channel Power** softkey.
The main menu of the channel power mode appears. If you select a new mode, all parameters are set to the values used when the mode was last active. If, however, you resume the last active mode, the measurements continue without any changes to the parameters.

To select the type of measurement within the channel power mode, proceed as follows:

- 1 Push the **Measure** softkey.
- 2 Select a measurement type using the vertically aligned function softkeys (Channel Power, ACPR, or OBW).

NOTE

Adjacent Channel Power Ratio (ACPR) measurements are available only in those communication systems where the channel bandwidth does not exceed the channel spacing; otherwise, the measurement range of the adjacent channel would overlap with that in the selected channel.

As an alternative, use the ACPR measurements within the spectrum analysis mode ([page 66](#)).

Operating in channel power mode

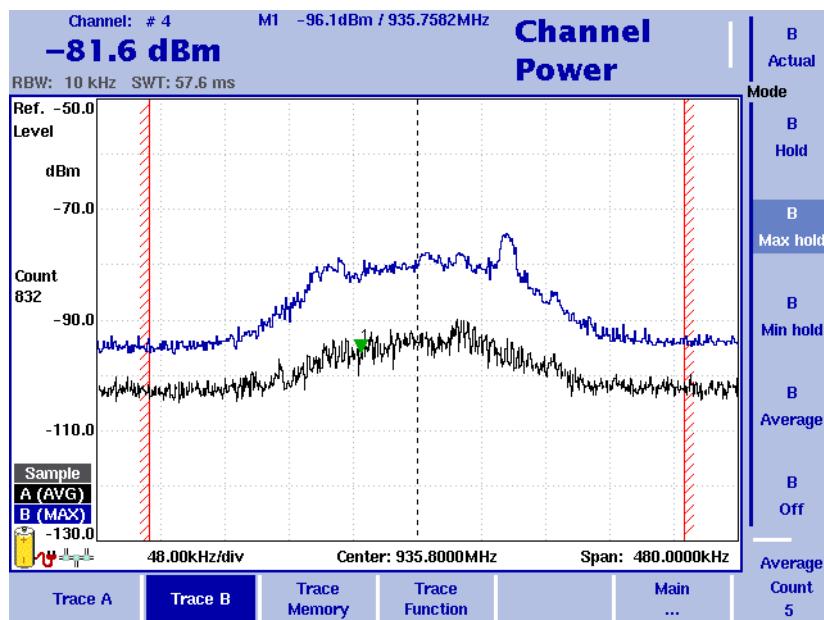


Figure 25 Example of a channel power measurement

This mode provides a measurement of the integral power within a given bandwidth. The measurement mode can be selected as described on [page 75](#).

In channel power mode, the frequency parameters, filters and sweep time cannot be selected individually. Instead, a communication system can be selected or defined in which the 9101 shall measure the channel power; the frequency parameters are stored with the communication system settings.

A few communication systems such as GSM are predefined in the 9101. More predefined system settings are available in the 9100 Data Exchange Software and can be downloaded to the 9101. In addition, the settings for an alternative communication system can be defined by the user, stored in the 9101 and recalled for channel power measurements.

Reading the channel power

In addition to the display elements explained on [page 13](#), the channel power mode also includes a large display of the channel power, along with the channel, resolution bandwidth and sweep time. In the example in [Figure 25 on page 76](#), the 9101 indicates the frequency range over which the channel power is measured between red vertical bars.

Changing the occupied bandwidth percentage

OBW measurements identify the frequency range in which a certain percentage of the transmit power falls. The percentage value can be changed as follows:

- 1 From the Channel Power main menu, select **Channel System**.
- 2 Press **% OBW** and enter a new percentage value in the range from 5 to 99.
- 3 Press **ENTER** to close the input field.
If the OBW measurement type is selected, the new OBW percentage value is indicated in the upper left-hand corner of the display.
The 9101 recalculates the frequency range based on the new percentage value.

NOTE

The occupied bandwidth can also be changed via the Measure menu.

Working with communication systems and frequency settings

Selecting a communication system on the 9101

You can activate communication system settings stored on the 9101 as follows:

- 1 In the main menu of the channel power mode, select **Ch. System > System Memory**.
The System Memory menu appears.
- 2 Press **Recall System**.
A scroll box appears, showing the available communication systems. Enter the system name as stored in the 9101, or move the **UP/DOWN** cursor keys to move the cursor to the system to be measured.
- 3 Press **ENTER** to confirm.
The input field and the scroll box disappear and the spectrum of the selected band is measured. The channel power of the first channel is displayed in the upper left-hand corner.

The 9101 comes with preinstalled communication systems. For a listing of all the channel systems preinstalled on the 9101 refer to ["Preinstalled systems on the 9101" on page 203](#).

NOTE

Apart from the channel width the parameters for preinstalled configuration systems cannot be modified.

Setting up a new communication system

A new communication system can be defined in terms of frequency range, channel bandwidth and spacing, and channel numbering; channels can then be addressed easily by their channel number rather than the carrier or center frequency. You can set up a new communication system as follows:

- 1 In the main menu, select **Ch. System**.
The Channel System menu appears.
- 2 Press **First Channel** and enter the first channel number in use by the system, then close the input field by pressing **ENTER**.
- 3 Press **Last Channel** to enter the number of the last channel in use by the system; close the input field by pressing **ENTER**.
- 4 Press **Channel Width** to change the measurement bandwidth; ensure to select the right unit (e.g. kHz).
- 5 Select the **Channel Spacing** softkey, enter the spacing between channel numbers and close the input field by pressing the enter key for the appropriate frequency unit.
- 6 Press the **1st Ch. Center** softkey and enter the carrier frequency for the first channel in use (channel number defined with the first softkey). Close the input field using the enter key for the appropriate unit (e.g. **MHz**).
- 7 For occupied bandwidth (OBW) measurements, select **% OBW** and enter the percentage value. Confirm the value by pressing **ENTER**.
- 8 Select **System Memory > Store System**, enter a new name for the system and press **ENTER**.

NOTE

Existing systems cannot be overwritten; you must delete the old system first.

If you delete a predefined system that is delivered with the 9101, it can be restored as depicted in section ["Undeleting default communication systems" on page 79](#).

Deleting a communication system

To delete a the communication system settings stored on the 9101, take the following steps.

- 1 From the main menu, select **Ch. System > System Memory**.
The System Memory menu appears.
- 2 Push the **Delete System** softkey.
A scroll box with the list of available communication systems appears.
- 3 Select the system settings to be deleted by moving the **UP/DOWN** cursor keys to the respective system settings name, and confirm by pressing **ENTER**.
The system settings are deleted from the list.
- 4 Press **ESCAPE** to close the input field and the scroll box.

Deleting all communication systems

You can clean up previously stored communication systems and easily delete all of them, including those that were originally delivered with the 9101.

- 1 From the main menu, select **Ch. System > System Memory**.
The System Memory menu appears.
- 2 Push the **Delete All** softkey.
A box appears, asking you to confirm that you want to delete all communication system settings.
- 3 Press **ENTER** to confirm deletion or **ESCAPE** to prevent the 9101 from deleting all the communication systems.
If confirmed, all the communication systems are deleted, that means the list of communication systems will be empty.

Undeleting default communication systems

If you have deleted communication systems that were delivered with the 9101, you can restore these system settings.

- 1 From the main menu, select **Ch. System > System Memory**.
The System Memory menu appears.
- 2 Push the **Restore Default Systems** softkey.
The 9101 creates all the communication systems that were originally delivered with the 9101.

Using the 9100 Data Exchange Software with communication systems

With the 9100 Data Exchange Software, more communication systems can be defined, loaded to the 9101 and selected for use. See section "["Managing communication systems for channel power measurements" on page 179](#)" for more information. Furthermore, within the 9100 Data Exchange Software further predefined communication systems are available for transfer to your 9101. For a listing of the communication systems available refer to "["Predefined systems in the 9100 Data Exchange Software" on page 204](#)".

Defining the frequency span

The 9101 can display either the full spectrum used by the system, or the channel to be measured. Select the frequency span as desired:

In the main menu, select either **Full System** or **Single Channel**.

If you select Full System, the full frequency band as defined for the communication system will be displayed. If you select Single Channel, only the frequency range of the currently selected channel will be shown.

Changing the channel

- 1 In the main menu, push the **Channel** softkey.
The Channel input field opens.
- 2 Enter the desired channel number within the communication system at hand, or select the channel number with the **UP/DOWN** cursor keys.
- 3 Press **ENTER** to confirm.
The channel power for the selected channel is indicated in the upper left-hand corner.

Changing the sweep time

The sweep time (SWT) determines how long it takes for a complete sweep over the measured frequency range (span).

By default, the 9101 automatically selects the sweep time depending on other measurement parameters such as the span. In some cases it may be an advantage to manually select a different sweep time. This is the case with pulsed signals where a longer sweep time may increase the measurement accuracy. If manually set, the sweep time should be selected long enough for the filtered signal to reach steady state. The 9101 will output an "UNCALibrated" warning if the sweep time is too low.

To change the sweep time in channel power mode, proceed as follows:

- 1 From the main menu, select **Measure**.
- 2 Push the **SWT** softkey.
- 3 Enter the new sweep time and confirm with the appropriate enter key for the unit.

Setting up the level parameters

The accuracy and the dynamic range between the measured signal and the noise floor depend on the proper setting of the level settings. These consist of the reference level and the attenuation.

The reference level basically determines the level at the top of the display. The vertical axis is divided into eight horizontal rows; you can adjust the scale (which defaults to 10 dB per line) to your preferences.

The attenuation setting can be coupled to automatically follow the reference level setting. For reference levels of -20 dBm and lower, the attenuation is set to 10 dB; the maximum attenuation is 50 dB.

Attenuation or gain due to external coupling can be compensated by frequency-dependent coupling factors, so that the displayed measurement values reflect the power at the device under test.

WARNING

The maximum allowable input power level at the **RF IN** connector is 30 dBm (1 W). Higher input levels may result in serious damage of the instrument.

Setting the reference level

- 1 In the main menu, push the **Ref.** softkey or select **Level** followed by **Ref.** Alternatively, push the **REF** function key.
The Reference Level input field opens.
- 2 Enter the new reference level either using the numeric keys, closing the input field with the appropriate enter key, or with the **UP/DOWN** arrow keys.
The new reference level appears at the top of the vertical axis. The reference is based on the actually set output power.

Setting the hardware attenuation

- 1 In the main menu, push the **Attenuation** softkey.
The Attenuation input field opens.
- 2 Enter a new attenuation value in the range from 0 to 50 dB (in 10 dB steps) and close the input field with one of the enter keys, or use the **UP/DOWN** arrow keys to select the attenuation value in the range from 10 to 50 dB. If the attenuation value is changed, the attenuation option will change to "auto".

NOTE

The attenuation value of 0 dB can be set only with the numeric keys to avoid accidental deactivation. The 0 dB setting should be selected carefully because input levels that are too high at the input may damage the instrument.

NOTE

For precision measurements, the input level subtracted by the attenuation should not exceed -23 dBm.

Changing the vertical scale

The scale for the vertical axis (power) can be changed in the range from 1 to 20 dB per division (vertical line in the displayed grid) in 1-3-5 steps as follows:

- 1 In the main menu, select **Level**.
- 2 Push the **Scale** softkey.
The Scale input field opens.
- 3 Select a new scale by entering a new number of dB per division numerically and pressing the **ENTER** or **MHz/dB/μs** key, or by pushing the **UP/DOWN** cursor keys.

Selecting the level unit for input and output

- 1 In the main menu, select **Level > Units**.
- 2 You can use logarithmic or linear units. In order to toggle the display between logarithmic and linear units press the **Unit** softkey in the lower right corner of the display and select log or lin.
- 3 You can now choose between the following units via the Unit softkey in the upper right corner of the display.
Logarithmic units: dBm, dB μ V, dBmV and dBV
Linear units: V, mV, μ V, mW, μ W.

Compensating gains and losses

If the device under test is connected to the 9101 Handheld Spectrum Analyzer via an amplifier or a device attenuating the signal, such as an antenna or a long cable, the measurement results are wrong by the gain or loss factor. This factor may be a constant or even frequency-dependent.

To view the correct measurement results, the gain or loss can be compensated. The 9101 can even compensate a frequency-dependent factor; a correction curve or table can be entered on an external PC using the 9100 Data Exchange Software and loaded to the 9101. Section ["Defining and loading external coupling parameters" on page 178](#) explains this part in more detail.

Enabling external device compensation

Once correction values are stored in the 9101, these can be selected and activated as follows:

- 1 In the main menu, select **Level > Ext. Dev. Memory**.
- 2 Press **Recall Ext. Dev. Comp.**
A pull-down menu appears with a list of names for the compensation tables available in the 9101.
- 3 Select a compensation table using the **UP/DOWN** cursor keys and confirm your choice by pressing **ENTER**.
- 4 Select the **Level** menu and push the **Ext. Dev. Comp.** softkey until "On" is highlighted.
The text "Ext. Dev." appears to the left of the results display.

Turning external device compensation off

- 1 In the main menu, select **Level**.
- 2 Push **Ext. Dev. Comp.** until "Off" is highlighted.
The text "Ext. Dev." to the left of the results display disappears.

Deleting files for external device compensation

You can delete files containing compensation parameters as follows:

- 1 In the main menu, select **Level > Ext. Dev. Memory**.
- 2 a. To delete an individual compensation file from the 9101 memory, press **Delete Ext. Dev. Comp.** Select a file name and press **ENTER**.
The compensation file is deleted from the list. Note that there will be no warning; once you have selected and requested a file to be deleted, this will occur immediately.
b. To delete all the compensation files from the 9101, push **Delete All** and confirm by pressing **ENTER**.
All compensation files are deleted.

Changing the input impedance

Most RF applications are using an impedance of $50\ \Omega$; other applications such as cable TV apply $75\ \Omega$. The 9101 is designed with an input impedance of $50\ \Omega$; it can, however, be used for testing a device with an impedance of $75\ \Omega$ by using the software impedance switch. The measurement results from the $50\ \Omega$ input are recalculated to fit the different impedance.

On the 9101, simply select the correct impedance value so that the 9101 can translate the internal measurement values to the power before the coupler.

- 1 To connect a $75\ \Omega$ device, connect the device under test to the 9101 Handheld Spectrum Analyzer.
- 2 In the main menu, select **Level**.
- 3 In the vertical menu, select the impedance of the device, that means select **Impedance: 50 Ω** or **Impedance: 75 Ω**, respectively.
New measurement results are presented with the new impedance value taken into account. In addition, if the impedance is changed to $75\ \Omega$ and the power had been displayed in dBm, the new measurements are shown in dB μ V. If the impedance is changed to $50\ \Omega$ and the power had been displayed in dB μ V, the new measurements are shown in dBm.

NOTE

Signal reflections on the cable between the $50\ \Omega$ and the $75\ \Omega$ device affect the measurement accuracy of the 9101 Handheld Spectrum Analyzer. For more accurate results, Willtek recommends using an impedance converter; such a converter will cause attenuation affecting the results. This attenuation can be compensated as explained in section "[Compensating gains and losses](#)" [on page 82](#).

Setting up the trace

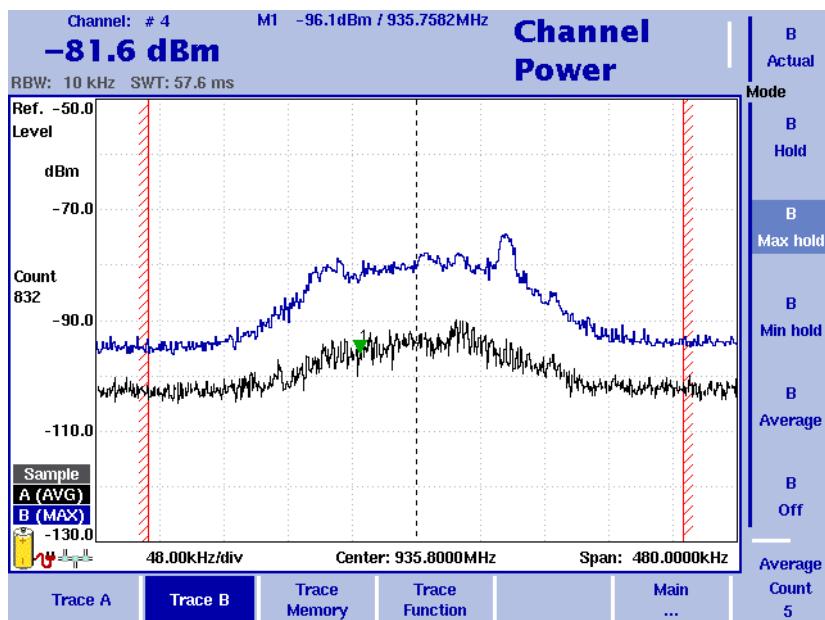


Figure 26 Example of two traces in channel power mode

The trace functions provide different views of the measurements, for example the actual measurement or an average over the last couple of measurements. You can even select two different views of the measurement. Another possibility is to compare the actual measurement with an older measurement which has been stored in the 9101 and loaded to one of the trace views (see section “[Storing and loading traces](#)” on page 89).

The 9101 samples many measurements for each frequency point. With the detector functions, you can define the method to select which of the samples is displayed.

Selecting the trace mode

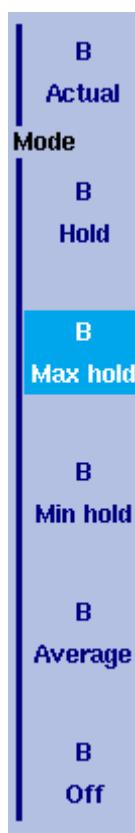
The 9101 has five different modes to display a trace:

- In Actual mode, the 9101 shows a complete new measurement in each trace. Subsequent traces are independent of each other.
- In hold mode, the last measurement is kept on the display; measurements continue but are not displayed.
- In max hold mode, the 9101 takes new measurements and, for each frequency point, compares the new measurement with the previous result. If the new measurement value is higher than the previous result, the new measurement value becomes the new result value; otherwise the old result value is kept. This way, the highest result since the start of the max hold measurement (or a parameter change) is kept and displayed.

- Similarly, in min hold mode, the 9101 takes new measurements and compares the new measurement with the previous result. If the new measurement value is lower than the previous result, the new measurement value becomes the new result value; otherwise the old result value is kept. This way, the lowest result since the start of the min hold measurement (or a parameter change) is kept and displayed.
- In average mode, the new measurement and previous ones are averaged for each frequency point displayed. The 9101 uses a recursive algorithm for averaging.

To select whether you want to view an actual measurement, stop and hold the last measurement, see the lowest or highest data for each frequency or an average value, proceed as follows:

- 1 In the main menu, select **Trace**.
- 2 Select the trace you want to modify (**Trace A** or **Trace B**) using the horizontal softkeys.
- 3 Select the trace mode with the vertical softkeys (**Actual**, **Hold**, **Max hold**, **Min hold**, **Average**).
The trace mode is shown at the left-hand side of the vertical axis, e.g. **A (ACT)**.


NOTE

For fastest valid results it is advisable to briefly activate the actual mode before selecting any other mode.

NOTE

When the trace is on hold, the measurement and failure counters continue counting. A second trace, if active, continues updating.

Turning the second trace on and off

You can define two different trace views, e.g. one with the actual values and one with the maximum values. While the first view (Trace A) is always active, the second can be switched off. The functions of turning Trace B on or off and selecting the trace mode are combined as follows:

- 1 From the main menu, select **Trace > Trace B**.
- 2 To turn trace B on, select the trace mode (**Actual, Hold, Max hold, Min hold, or Average**). To turn trace B off, select **Off**.
If activated, the trace mode is displayed left to the vertical axis, e.g. **B (MAX)**.

Subtracting trace B from trace A

If you have used two different trace views as described above, you can show the difference between trace A and trace B by subtracting trace B from trace A as follows:

- 1 In the Trace menu select the softkey **Trace Function** followed by the softkey **Subtract A – B → A**.
- 2 Select **on** to subtract trace B from trace A. On the left-hand side of the result area the Term "Subtract" will now be displayed to indicate that a mathematical function is being performed.
- 3 The result is displayed in trace A.

NOTE

If trace A is on Hold, this function is not available and thus the **Subtract A – B → A** softkey is greyed out.

Adding trace B to trace A

NOTE

This function is available for serial numbers 5004001 and higher.

If you have used two different trace views, you can also show the sum of trace A and trace B by adding the two traces as follows:

- 1 In the Trace menu select the softkey **Trace Function** followed by the softkey **Add A + B → A**.
- 2 Select **on** to add B to trace A. On the left-hand side of the result area the term "Add" will now be displayed to indicate that a mathematical function is being performed. The result is displayed in trace A.

Defining the number of measurements for averaging

When the trace mode is set to averaging, it may be useful to adjust the number of measurements over which the 9101 averages the results. The average count value that can be defined in the Trace menus applies to both traces alike.

The 9101 uses a recursive algorithm in which a new result is added to the older averages with a weighting factor; the description below indicates how to change this weighting factor.

- 1 Enter the Trace menu (select **Trace > Trace A** or **Trace B** from the main menu).
- 2 Push the **Average Count** softkey.
The Average input field opens.
- 3 Enter the number of measurements over which to average the results, in the range from 2 to 128.
- 4 Press **ENTER**.

Selecting the detection method

In channel power mode, the detection method is set to Sample by default. If the 9132 RMS Detector Option is installed and activated on your 9101, the root mean square detector showing the RMS-effective level of the measured signal is also available. In order to set the detection method to RMS proceed as follows:

- 1 From the main menu, select **Trace > Detect**.
- 2 Select the RMS from the Detector section of the vertical softkeys.
The selected detection method is indicated at the left-hand side of the display.

NOTE

If the 9132 RMS Detector Option is not installed on your 9101, the RMS detector is greyed out.

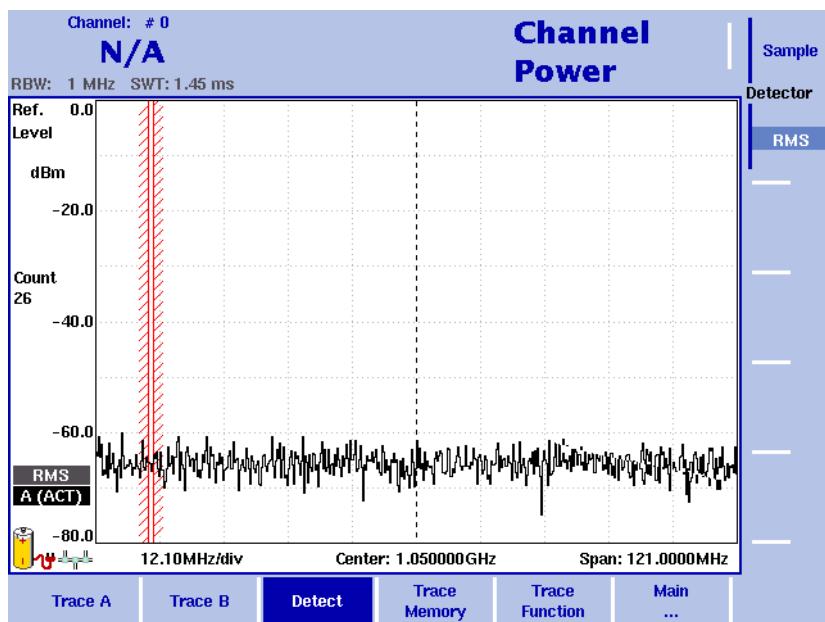


Figure 27 Detect menu with activated 9132 RMS Detector Option

Copying traces inside the 9101

You can copy an actual measurement from trace A to trace B or vice versa; this way you can keep the last measurement results on the screen and at the same time continue measuring or change the settings of the 9101 Handheld Spectrum Analyzer. The previous results in the target trace will be erased; the target trace will assume hold mode.

To copy the measurement data from one trace to another, proceed as follows:

- 1 From the main menu, select **Trace > Trace Function**.
- 2 To copy the measurement results from trace A to trace B, press **Copy A → B**.
To copy results from trace B to trace A, press **Copy B → A**.

NOTE

If you first press **Copy A → B**, then **Copy B → A** (or vice versa), both traces will display the same results and will be in hold mode.

Storing and loading traces

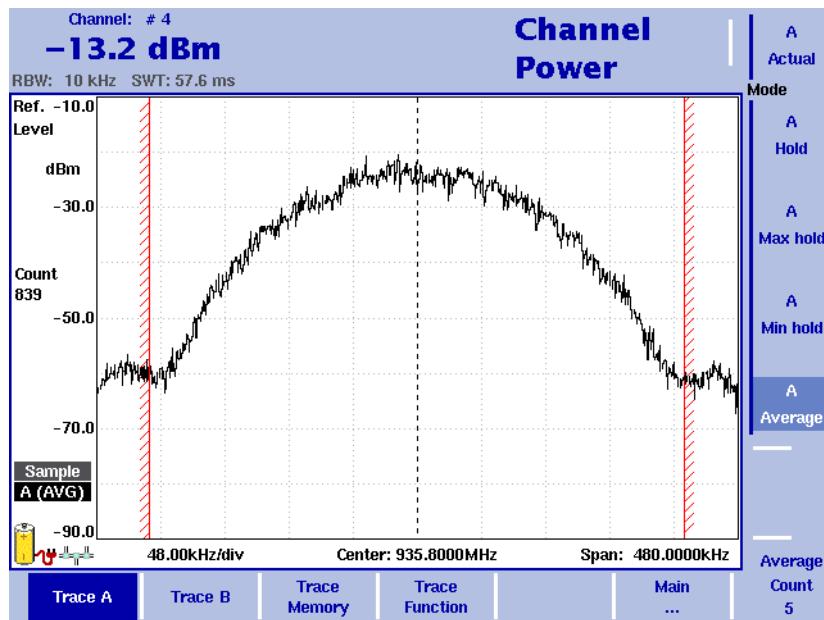


Figure 28 Trace A menu

The 9101 provides the capability to store up to 99 traces in the 9101 and load them again at random. The stored trace can then be examined or compared to a recent measurement. In addition, stored traces can also be transferred to a PC using the 9100 Data Exchange Software which is delivered with the 9101. For details on the software refer to [Chapter 8 "9100 Data Exchange Software"](#).

Storing a trace

You can store either trace A and B. Any trace can be stored under a name with up to 11 characters. The procedure to enter text in alphanumerical input fields is explained in section ["Entering numbers and text" on page 22](#). Note that along with the trace, the instrument settings such as frequency range, level range and markers are stored.

- 1 Activate the trace you want to store by pushing **Trace > Trace A** or **Trace B**.
- 2 From the main menu, select **Trace > Trace Memory**.
- 3 Push **Store Trace**.
An input field opens, allowing you to enter a name for the trace. Below the input field, a list of existing traces is indicated.
- 4 Enter a name for the trace. To use a modified trace name, you can move the cursor to a suitable trace name with the **UP/DOWN** cursor keys. The selected trace name also appears in the input field; use the **LEFT/RIGHT** cursor keys to move the cursor to the appropriate position within the trace name to enter additional characters or delete existing ones.
- 5 Confirm your choice by pressing **ENTER**.
The input field closes and the trace is stored under the selected name.

Reusing a trace name

You cannot overwrite an existing trace using the same trace name. If you want to reuse a trace name, you will have to delete the old trace first.

Reloading a trace

- 1 From the main menu, select **Trace > Trace Memory**.
- 2 Push **Recall Trace**.
An input field opens, allowing you to enter the trace name. Below the input field, a list of existing traces is indicated.
- 3 Enter the name of the trace to load, or choose one with the **UP/DOWN** cursor keys.
- 4 Confirm your choice by pressing **ENTER**.
The input field closes and the trace is displayed.

NOTE

Along with the trace, the 9101 also loads the settings that were used when the trace was saved. These will overwrite the current settings such as frequency range, reference level and markers.

Deleting a trace

Stored traces can be deleted. Note that there will be no warning; once you have selected and requested a file to be deleted, this will occur immediately.

- 1 From the main menu, select **Trace > Trace Memory**.
- 2 Push **Delete Trace**.
An input field for the name of the trace to be deleted appears, together with a trace selection box.
- 3 Select the trace to be deleted using the **UP/DOWN** cursor keys. Alternatively, enter the trace name with the numeric keys.
- 4 Confirm your choice by pressing **ENTER**.
The trace is deleted from the trace list.
- 5 Select another trace for deletion, or press **ESCAPE** to leave the entry field and the trace selection box.

Deleting all traces

Instead of deleting traces individually, all traces can be deleted in one step. You will be asked to confirm this step.

- 1 From the main menu, select **Trace > Trace Memory**.
- 2 Press **Delete All**.
A query appears, asking you to confirm your selection.
- 3 Press **ENTER** to have all traces deleted.
The query disappears. All traces are deleted.

Storing and loading instrument settings

To store or load the instrument settings including frequency range, level setting and markers, proceed as described in sections "Storing a trace" and "Reloading a trace" on page 90.

Viewing the channel power mode parameters

You can get an overview of all parameters set for this mode in the Parameter Window. To view the parameters, press the **PARAM** function key. To close the Parameter Window and return to the menu you opened it from, press the **ESCAPE** function key, the **Exit** softkey or the **PARAM** function key. To close the parameter page and change to the relevant main menu press the **Main** softkey.

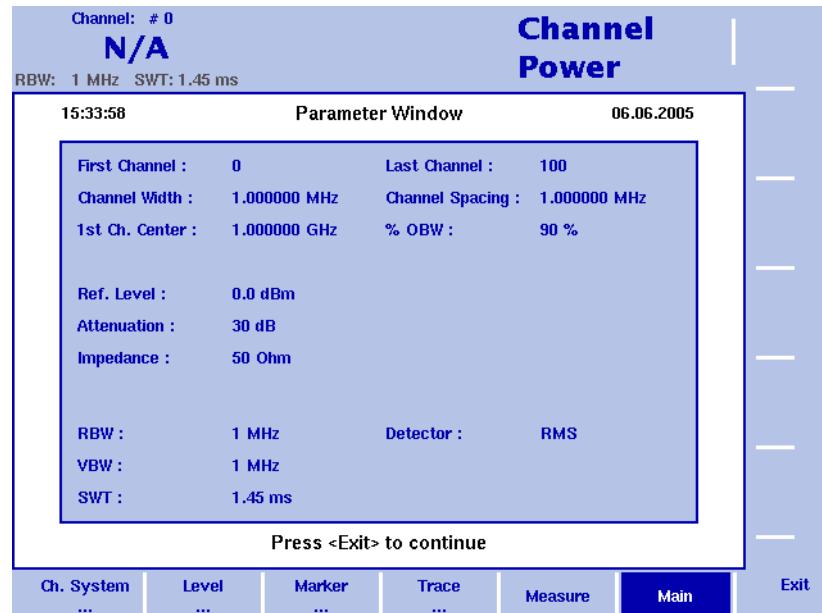


Figure 29 Channel power mode parameters

Troubleshooting

5

This chapter provides information on handling errors and problems related to the 9101 Handheld Spectrum Analyzer.

Handling system errors

Should an error or problem occur that prevents you from controlling the instrument and thus requires the instrument software to be set up again, the 9101 offers the Setup Application Software menu. This menu provides you with access to the instrument without starting the instrument software and enables you to perform a software update.

[Chapter 6 “Updating the Instrument Software”](#) contains a detailed description of the processes involved in updating the instrument's software via the Setup Application Software menu.

Updating the Instrument Software

6

This chapter describes how to perform an update of the instrument's software via the 9101 Handheld Spectrum Analyzer's Setup Application Software menu. Topics discussed in this chapter include the following:

- ["Entering the Setup Application Software menu" on page 96](#)
- ["Setting a password" on page 96](#)
- ["Performing a serial update" on page 97](#)
- ["Performing a LAN update" on page 99](#)
- ["Determining the Host IP address" on page 100](#)

Entering the Setup Application Software menu

The 9101 Handheld Spectrum Analyzer's Setup Application Software menu can be entered instead of automatically loading the instrument software. This menu provides you with access to the instrument in case an error or problem should occur that prevents you from controlling it and requires the instrument software to be set up again. The menu offers two options for the update process: Serial update and LAN update. To enter the Setup Application Software menu, proceed as follows:

- 1 Turn on the 9101 Handheld Spectrum Analyzer.
The boot-up screen appears.
- 2 When the message "Press 0 to enter Setup" appears, press the numeric key **0**.
The Setup Application Software menu appears.

Setting a password

In order to ensure that software updates are only performed by authorized users you can set a password to protect the software update option. If a password is set, the user performing the software update via the Setup Application Software menu will be asked to enter it before data are loaded.

NOTE

This password only affects the software update options available on the Setup Application Software menu. It does not affect the usage of the instrument's application software.

In order to set a password proceed as follows:

- 1 Switch on the 9101. In order to enter the Setup Application Software menu press the numeric key **0** when the input request message is displayed on the boot-up screen. Now the Setup Application Software menu is displayed.
- 2 Press the numeric key **3** to open a password input field.
- 3 Enter a 6-digit numeric string as your password. For each digit you enter an asterisk (*) will be displayed in the input field.
- 4 Press **ENTER** to submit your input. You will now be asked to reenter your password for confirmation.
- 5 Press **ENTER** to submit your input. If your input is not identical to the password entered in the first input field, an error message will be displayed and you can enter the password again. Otherwise your new password will be saved.

You can also change a previously defined password. In order to do so proceed as described above. If a password has already been defined, you will be asked automatically to enter the old password before you can enter a new one.

NOTE

If you have forgotten your password, please contact one of Willtek's Technical Assistance Centers. For contact information please refer to section "["Technical assistance" on page xii.](#)

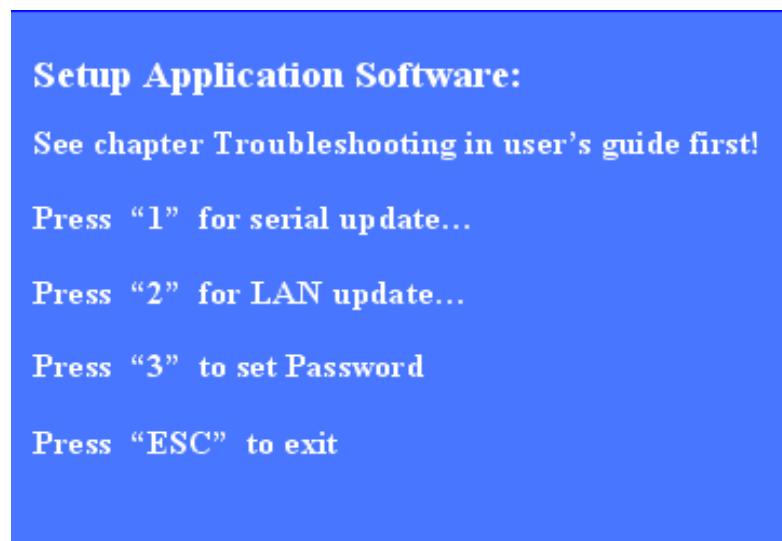
NOTE

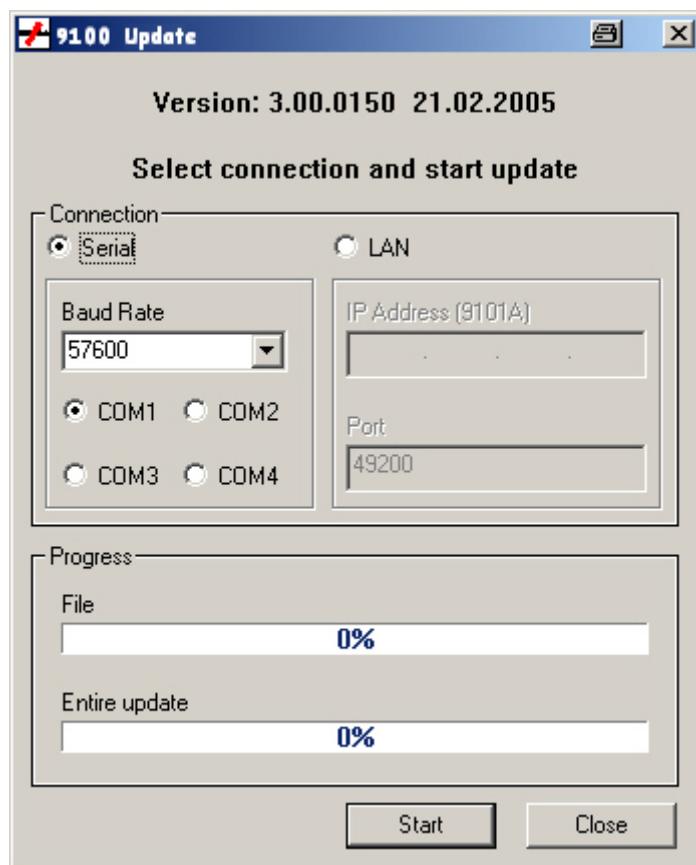

This function is available for serial numbers 5004001 and higher.

Performing a serial update

The software update requires a 9100 software update file, which is an executable file running on a Windows PC that also includes the software update for your 9101 Handheld Spectrum Analyzer. Such a file can be downloaded from Willtek's website, e.g. the file Willtek_9100Setup_4_50.exe.

Take the following steps to perform a serial update of the instrument software via the Setup Application Software menu:


- 1 Connect the 9101 to an external power supply.
- 2 Connect the 9101 to the PC. See section "["Connecting the 9101 Handheld Spectrum Analyzer" on page 10](#) for further details.
- 3 Switch on the 9101.
The boot-up screen is displayed.


Willtek 9100 Handheld Spectrum Analyzer
© Copyright 2005 Willtek Communications GmbH
All rights reserved.
U.S. patent pending

Press "0" to enter Setup...

- 4 In order to enter the Setup Application Software menu press the numeric key **0** when the input request message is displayed on the boot-up screen. Now the Setup Application Software menu is displayed.

- 5 Press numeric key **1** to open the Serial Update menu.
- 6 In order to upload the application files from the PC to the instrument start the installation program on your PC. This will open the Update window as shown below.

- 7 In the Connection section, select **Serial**.
- 8 To start the serial update press the numeric key **1** on the instrument.

NOTE

You do not have to click on **Start** in the Update window on your PC. The update process will be started without any further input on the PC.

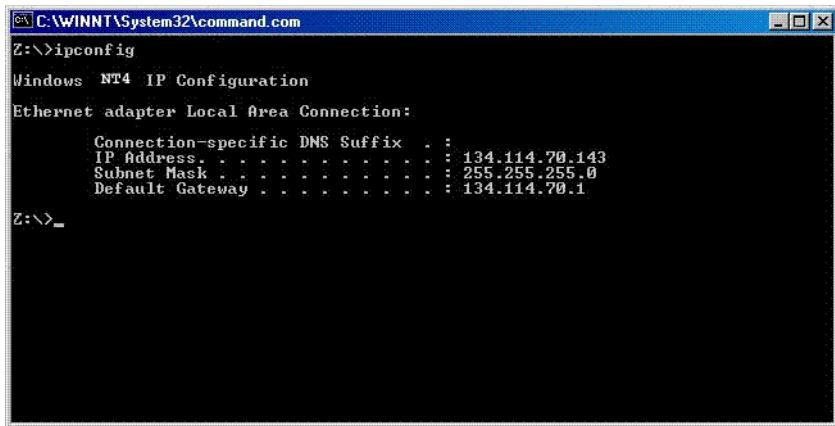
Performing a LAN update

The software update requires a 9100 software update file, which is an executable file running on a Windows PC that also includes the software update for your 9101 Handheld Spectrum Analyzer. Such a file can be downloaded from Willtek's website, e.g. the file Willtek_9100Setup_4_50.exe.

Take the following steps to perform a LAN update of the instrument's software via the Setup Application Software menu:

- 1 Connect the 9101 to an external power supply.
- 2 Connect the 9101 to the PC. See section "["Connecting the 9101 Handheld Spectrum Analyzer" on page 10](#)" for further details.
- 3 Switch on the 9101. In order to enter the Setup Application Software menu press the numeric key **0** when the input request message is displayed on the boot-up screen. Now the Setup Application Software menu is displayed.
- 4 Press the numeric key **2** to open the LAN Update menu.
- 5 Here the IP addresses of the instrument (Target IP) and the PC (Host IP) are displayed. Press the numeric key **1** to change or enter the Host IP and **2** to change the Target IP. See section "["Determining the Host IP address" on page 100](#)" for information on determining the Host PC's IP address.
- 6 In order to upload the application files from the PC to the instrument start the installation program on your PC. This will open the Update window (see "["Performing a serial update" on page 97](#)").

NOTE


You do not have to click on **Start** in the Update window on your PC. The update process will be started without any further input on the PC.

- 7 In the Connection section, select **LAN**.
- 8 In order to start the update press the numeric key **6** on the instrument. A message prompts you to press any key to start the update or to hit the ESC key to abort the update.
- 9 Press the **ENTER** key to start the update. Both the instrument and the installation program on the PC display the progress of the software update.

Determining the Host IP address

In order to determine your host PC's IP address proceed as follows:

- 1 On the status bar, click **Start** and select **Run** to open an input window.
- 2 On the input line, type **cmd** to open a command prompt.
- 3 Type **IPconfig -all** to display the network settings for the PC. In this list you will find its IP address. To close the command prompt type **exit**.

SCPI Command Reference

7

This chapter provides a reference list of commands for remote control of the 9101 Handheld Spectrum Analyzer. Topics discussed in this chapter are as follows:

- ["Overview" on page 102](#)
- ["General commands" on page 102](#)
- ["System commands" on page 108](#)
- ["Sense commands" on page 114](#)
- ["Input commands" on page 128](#)
- ["MMemory commands" on page 130](#)
- ["Instrument commands" on page 141](#)
- ["fDisplay commands" on page 142](#)
- ["Calculate commands" on page 146](#)
- ["Format commands" on page 153](#)
- ["Service commands" on page 154](#)
- ["SCPI errors" on page 158](#)

Overview

The command set of the 9101 Handheld Spectrum Analyzer follows the SCPI standard and is broken down into the following subsystems:

- General commands
- System commands
- Sense commands
- Input commands
- Memory commands
- Display commands
- Calculate commands
- Format commands

Each keyword in the command can be used either in its long or its short form. Uppercase letters are used to indicate the short-form command syntax. Within one keyword, either the short form or the full version can be used, but not a mix.

The syntax can be used to form either a command or a query (with a question mark behind the command form). Many SCPI commands have either a command form or a query form, but not both.

Please refer to the ["Index of SCPI Commands" on page 313](#) for an alphabetical list of commands.

General commands

:REBoot

Syntax	<code>:REBoot</code>
Parameters	There are no parameters.
Command	Reboots the 9101. The current settings are not affected by this command.
Query	There is no query form of this command available.
Example	<code>:REBoot</code>

:HCOPY[:IMMEDIATE]

Syntax	<code>:HCOPY[:IMMEDIATE]</code>
Parameters	There are no parameters.
Command	Starts a printout over the serial port. For further informations see command <code>:SYSTem:PRINter:TYPE</code> .
Query	There is no query form of this command available.
Example	<code>:HCOPY</code>

***CAL**

Syntax	*CAL?
Parameters	There are no parameters.
Command	The command form is not available.
Query	Returns the date of the last calibration by Willtek in the format yyyy, mm, dd.
Example	*CAL? Returns 2004, 04, 01.

***OPT**

Syntax	*OPT?
Parameters	There are no parameters.
Description	The command form is not available.
Query	
Example	*OPT?

***CLS**

Syntax	*CLS
Parameters	There are no parameters.
Command	Resets the entire status reporting system: – The service register will be cleared (all bits will be set to 0). – The event status register will be cleared (all bits will be set to 0). – The error message queue will be emptied. – All event-type registers will be cleared.
Query	There is no query form of this command available.

***IDN**

Syntax	*IDN?
Parameters	There are no parameters.
Command	There is only a query form of this command available.
Query	Returns a string, containing the following information: – manufacturer's name – name of the device – serial number – software revision number All parameters are separated by commas. Note: In times of company mergers and acquisitions, it is a good idea to check the name of the device, not the manufacturer's name which may change between software updates. This does not preclude any name changes at Willtek but rather applies to instrumentation in general.
Example	*IDN? returns: "WILLTEK, 9101, 0104012, 1.00"

***RST**

Syntax	*RST
Parameters	There are no parameters.
Command	Resets the entire test set. All parameters, limits etc. will be set to the internally pre-defined default values.
Query	There is no query form available.

***WAI**

Syntax	*WAI
Parameters	There are no parameters.
Description	Postpones the execution of a command until all commands issued previously have been completed
Query	There is no query form of this command available.

***OPC**

Syntax	*OPC?
Parameters	There are no parameters.
Command	Only the query form is available.
Query	Waits until the previous command is completed. In addition, the query returns the Operation Complete flag which is 1 in the successful case.

Commands affecting the event status register

The event status register contains eight bits. The meaning of these bits is outlined in the table below.

The commands working on the event status register are described below the table.

Bit	Decimal	Meaning
7	128	Power on – this bit is always set.
6	64	User Request – a 1 on this position indicates that the 9101 is no longer controlled by remote commands but by user interaction.
5	32	Command error – this bit indicates that a SCPI command error occurred (SCPI error codes 100 to 199).
4	16	Execution error – is set after a SCPI execution error did occur (SCPI error codes 200 to 299).
3	8	Device-dependent error – this bit indicates that a device-specific SCPI error did occur (SCPI error codes 300 to 399).
2	4	Query error – is set after a SCPI query error occurred (SCPI error codes 400 to 499).

1	2	Request control – this bit is reserved for future use.
0	1	Operation complete flag – is set as soon as the execution of a command has been completed.

***ESE**

Syntax	<code>*ESE <int1></code>
Parameters	<code>int1</code> is an integer. The valid range is from 0 to 255 (8 bits).
Command	Sets the enable filter (mask) of the event status register. <code>int1</code> is the decimal representation of the binary mask. The mask and the current contents of the event status register will be ANDed. If the result is not zero, then bit 5 of the Service register will be set.
Query	The query form reads out the enable filter (mask) currently set and returns its binary representation in a string.
Example	<code>*ESE 128</code> As soon as power has been switched on, bit 7 (Power on) will be set. ANDed with the mask 128 , a binary 1 will occur and thus bit 5 of the service register will be set.

***ESR**

Syntax	<code>*ESR?</code>
Parameters	There are no parameters.
Command	There is only a query form of this command available.
Query	Returns the decimal representation of the current contents of the event status register in a string. Note: This register is self-destructive, i.e. its contents will be cleared after reading.
Example	After power-on, the <code>*ESR?</code> query will return "128" . This means that bit 7 is set and all the other bits of the event status register are 0. The command will clear the event status register and a subsequent <code>*ESR?</code> query will return "0" .

Commands affecting the service register

The service register represents the highest level within the report structure of the 9101.
The service register contains eight bits.
If any of the bits 0 to 5 or 7 is set, the summary status bit (bit 6) of the service register will be set as well.

NOTE

The service register is self-destructive. This means that its contents will be cleared after reading.

Bit	Decimal	Meaning
7	128	OPERational status summary. When this bit is set, an event within the general operation register group (e.g. the 9101 is waiting for a trigger) passed all filters.
6	64	Summary status bit. This bit will always be set as soon as any other bit of the service register has been set.
5	32	Event status summary. When this bit is set, an event within the event status register group (e.g. an error occurred) passed all filters.
4	16	Message available. This bit will be set to 1 as soon as a query has been completed and measurement results are available.
3	8	QUESTIONable status summary. If this bit is set, an event within the general questionable status register group (e.g. 'value out of range') passed all filters.
2	4	Error queue status. When this bit is set, the error queue contains error messages. Up to 10 error messages can be logged in the error queue. The error queue can be read out, using the :SYSTem:ERRor? query.
1	2	Remote command completed. This bit will be set to 1 after a remote (SCPI) command has been completed. Note: When the 9101 receives a SCPI command, it will block any further input readings until the command has been completed.

***SRE**

Syntax	<code>*SRE <int1></code>
Parameters	<code>int1</code> is an integer. The valid range is from 0 to 255 (8 bits).
Command	Sets the enable filter (mask) for the service register. <code>int1</code> is the decimal representation of this binary mask. The mask and the current contents of the service register will be ANDed.
Query	The query form reads out the mask currently set and returns its binary representation in a string.
Example	<code>*SRE 68</code> As soon as an error occurs, bits 2 and 6 of the service register will be set. ANDed with the mask (68), a binary 1 will be the result.

***STB**

Syntax	<code>*STB?</code>
Parameters	There are no parameters.

Command	There is only a query form of this command available.
Query	Returns the decimal representation of the current contents of the service register in a string. Note: This register is self-destructive, i.e. its contents will be cleared after reading.
Example	A *STB? command returns "68". The return value of 68 (= 64 + 4) means that an error occurred (4).

System commands

With the system commands, the internal settings of the 9101 Handheld Spectrum Analyzer can be changed.

:SYST:DATE

Syntax	<code>:SYST:DATE <int1>,<int2>,<int3></code>
Parameters	<code>intx</code> are three integers. The minimum value for <code>int1</code> is 1998, the maximum is 2100. The default value is 1998. The minimum value for <code>int2</code> is 1, the maximum is 12. The default value is 1. The minimum value for <code>int3</code> is 1, the maximum is 31. The default value is 1.
Command	Sets the system date. This command uses the following format: <code>yyyy,mm,dd</code> where <code>yyyy</code> stands for the four digits of the year (<code>int1</code>), <code>mm</code> gives the current month (<code>int2</code>), <code>dd</code> represents the day of the current month (<code>int3</code>).
Query	Reads and returns the current system date in a string, using the format explained above.
Example	<code>:SYST:DATE 2001,7,6</code> Sets the system date to the July 6, 2001.

:SYST:TIME

Syntax	<code>:SYST:TIME <int1>,<int2>,<int3></code>
Parameters	<code>intx</code> are three integers. The minimum value for <code>int1</code> is 0, the maximum is 23. The default value is 0. The minimum value for <code>int2</code> is 0, the maximum is 59. The default value is 0. The minimum value for <code>int3</code> is 0, the maximum is 59. The default value is 0.
Command	Sets the system time. This command uses the following format: <code>hh,mm,ss</code> where <code>hh</code> stands for the two digits of the current hour, using a 24 hour time format (<code>int1</code>), <code>mm</code> gives the current minute (<code>int2</code>) and, <code>ss</code> represents the seconds of the system time (<code>int3</code>).
Query	Reads and returns the current system time in a string, using the format explained above.
Example	<code>:SYST:TIME?</code> String returned in this example: "14,56,05" meaning roughly four minutes to 3 pm.

:SYST:COMMunicate:LOCal

Syntax	<code>:SYST:COMMunicate:LOCal</code>
Parameters	There are no parameters.
Command	Sets up the 9101 to allow manual operation on the front panel during SCPI operation. Notes: <ul style="list-style-type: none">- This command may be used e.g. to allow interactive alignment procedures in a production flow.- The instrument can also be set to local mode by pressing the Escape function key on the front panel.

Query There is no query form of this command available.

Example :SYST:COMM:LOC

:SYST:COMMunicate:ECHO

Syntax :SYST:COMMunicate:ECHO <PredefExpr>

Parameters **PredefExpr** is one of the following predefined expressions: ON | OFF.
Default is ON.

Command This command determines how the Willtek 9101 acts after executing a SCPI command.
If echo is set to ON, there will be a response. Either "ok", if the execution was successful or "ERR" if an error occurred. The echo-on mode is preferred for entering interactive commands.
If echo is set to OFF, there will be no response to a SCPI command. In this case it is possible to check with the *OPC? query, when the SCPI command is finished and the Willtek 9101 is ready to receive the next command.

Query Reads and returns the current echo setting.

Example :SYST:COMM:ECH ON
Returns the following string: "ok"
All subsequent commands return "ok" or "ERR".
:SYST:COMM:ECH?
Returns the following string: "ON"
:SYST:COMM:ECH OFF
Returns nothing, all subsequent commands return nothing.

:SYST:COMMunicate:ETHernet?

Syntax :SYST:COMMunicate:ETHernet?

Parameters There are no parameters.

Command There is solely a query form of this command available.

Query Returns ON, if the Willtek 9100 is connected to a local area network (LAN) via TCP/IP connector, otherwise returns OFF.

Example :SYST:COMM:ETH?
String returned in this example: "OFF"

:SYST:COMMunicate:ETHernet:IPADdress

Syntax :SYST:COMMunicate:ETHernet:IPADdress <int1>,<int2>,<int3>,<int4>

Parameters **intx** are four integers.
The minimum value for all integers is 0, the maximum is 255. The default value is 0.

Command This command sets the IP address of the Willtek 9101 to the parameter values.

Query Reads and returns the current setting of the IP address as explained above.

Example SYST:COMM:ETH:IPAD 192,16,16,114 sets the IP address to a defined value.

:SYST:COMM:ETHernet:TName

Syntax	<code>:SYST:COMM:ETHernet:TName <string></code>
Parameters	<code>string</code> is a string only containing the device name of the Willtek 9101.
Command	This command sets the device name of the Willtek 9101. It can be used to announce a symbolic device name for the 9101, if the network supports DHCP (Dynamic Host Configuration Protocol).
Query	Reads and returns the current setting of the device name as explained above.
Example	<code>SYST:COMM:ETHernet:TName "TARGET9104"</code> sets the device name to a defined value.

:SYST:COMM:ETHernet:SUBNetmask

Syntax	<code>:SYST:COMM:ETHernet:SUBNetmask <int1>,<int2>,<int3>,<int4></code>
Parameters	<code>intx</code> are four integers. The minimum value for all integers is 0, the maximum is 255. The default value is 0.
Command	This command sets the subnet mask of the Willtek 9101 to the parameter values. Setting a subnet mask may speed up the traffic on the Ethernet. Note: This command is supported from software version 2.00 on.
Query	Returns the current setting of the subnet mask as explained above.
Example	<code>SYST:COMM:ETH:SUBN 255,255,255,255</code> sets the subnet mask to a defined value.

:SYST:COMM:ETHernet:PORT

Syntax	<code>:SYST:COMM:ETHernet:PORT <int></code>
Parameters	<code>int</code> defines the TCP/IP port address of the Willtek 9101. The address must be in the range from 1024 to 65535. Default value is 49200.
Command	This command sets the port address on which the Willtek 9101 can be controlled via LAN to a new value.
Query	Reads and returns the current setting of the port used by TCPIP as explained above.
Example	<code>SYST:COMM:ETHernet:PORT 49200</code> sets the TCP/IP port address to its default.

:SYST:COMM:ETHernet:TERMinator

Syntax	<code>:SYST:COMM:ETHernet:TERMinator <PredefExpr></code>
Parameters	<code>PredefExpr</code> is one of the following predefined expressions: CRLF LF CR. Default is CRLF.
Command	Sets the terminator characters, which are appended to every SCPI respond from the Willtek 9101 LAN interface.
Query	Reads and returns the current terminator setting for the LAN interface.
Example	<code>:SYST:COMM:ETH:TERM CR</code> <code>:SYST:COMM:ETH:TERM?</code> Returns the following string: "CR "

:SYST:COMM:SER:BAUDrate

Syntax	<code>:SYST:COMM:SER:BAUDrate <int1></code>
Parameters	<p><code>int1</code> is an integer. The minimum value for <code>int1</code> is 300, the maximum value is 57600. The default value for <code>int1</code> is 57600. Valid values are 300, 1200, 2400, 4800, 9600, 19200, 38400 and 57600.</p>
Command	Sets the data rate for the serial port. Only the data rate can be changed; all other parameters are fixed. The number of bits per character is set to 8, the number of stop bits is set to 1 and parity is set to NO.
Query	Reads and returns the serial interface data rate currently set.
Example	<pre>:SYST:COMM:SER:BAUD 9600 :SYST:COMM:SER:BAUD?</pre> <p>String returned in this example: "9600".</p>

:SYST:COMM:SER:TERMinator

Syntax	<code>:SYST:COMM:SER:TERMinator <PredefExpr></code>
Parameters	<code>PredefExpr</code> is one of the following predefined expressions: CRLF LF CR. Default is CRLF.
Command	Sets the terminator characters, which are appended to every SCPI response from the Willtek 9101 serial interface.
Query	Reads and returns the current terminator setting for the serial interface.
Example	<pre>:SYST:COMM:SER:TERM LF :SYST:COMM:SER:TERM?</pre> <p>Returns the following string: "LF"</p>

:SYST:ERRor[:NEXT]?

Syntax	<code>:SYST:ERRor[:NEXT]?</code>
Parameters	There are no parameters.
Command	There is solely a query form of this command available.
Query	Returns the oldest unread error message from the internal error queue of the Willtek 9101. The queue entry returned will be a string (text). The maximum length of the text is 255 characters. Note: A list of error messages can be found in section " SCPI errors " on page 158.
Example	<pre>*RESET :SYST:ERRor:NEXT?</pre> <p>String returned in this example: -113, "Undefined header"</p>

:SYST:ERRor:COUNT?

Syntax	<code>:SYST:ERRor:COUNT?</code>
Parameters	There are no parameters.
Command	There is solely a query form of this command available.

Query	Returns the number of unread error messages in the internal error queue of the Willtek 9101. The string returned will contain one integer. The maximum number of errors stored internally is 10.
Example	<code>:SYSTem:ERRor:COUNT?</code> String returned in this example: "0" This means that there are no unread error messages in the error queue.

:SYSTem:ERRor:CODE[:NEXT]?

Syntax	<code>:SYSTem:ERRor:CODE[:NEXT]?</code>
Parameters	There are no parameters.
Command	There is solely a query form of this command available.
Query	Returns the code of the oldest unread error message in the internal error queue of the Willtek 9101. The string returned will contain one integer (and no text). Note: A list of error messages can be found in section " SCPI errors " on page 158.
Example	<code>*RESET</code> <code>:SYSTem:ERRor:CODE?</code> String returned in this example: "-113" This means that an undefined header (*RESET) was received.

:SYSTem:ERRor:CODE:ALL?

Syntax	<code>:SYSTem:ERRor:CODE:ALL?</code>
Parameters	There are no parameters.
Command	There is solely a query form of this command available.
Query	Returns the error codes of all unread error messages in the internal error queue of the Willtek 9101. The string returned will contain a maximum of 100 integers, separated by commas. Note: A list of error messages can be found in section " SCPI errors " on page 158.
Example	<code>:SYSTem:ERRor:CODE:ALL?</code> String returned in this example: "-113,-112,0,0,0,0,0,0,0,0" This means that there were two unread error messages in the error queue.

:SYSTem:DNAME

Syntax	<code>:SYSTem:DNAME <string1></code>
Parameters	string1 is a string (text) parameter. The maximum length of string1 is 11 characters.
Command	Sets a user-definable device name for the 9101 to use this unique name on protocols.
Query	Reads and returns the device name set on this 9101.
Example	<code>:SYSTem:DNAME "Develop5"</code> <code>:SYST:DNAME?</code> String returned in this example: "Develop5"

:SYSTem:OPTions

Syntax	<code>:SYSTem:OPTions <string1></code>
Parameters	string1 is a string (text) parameter. The maximum length of string1 is 25 characters.
Command	Enables or disables a software option on the Willtek 9101 with the appropriate option key string1.
Query	There is no query form available.
Example	<code>:SYSTem:OPTions "00172663845433"</code> Enables the option corresponding to the key.

:SYSTem:SCReendump:COLor?

Syntax	<code>:SYSTem:SCReendump:COLor? <int1></code>
Parameters	int1 is a integer in the range of 0 to 255.
Command	There is only the query form available.
Query	Returns the RGB color value (in hexadecimal) of the given color palette entry. Max. 256 palette entries are available.
Example	<code>:SYST:SCR:COL? 5</code> String returned in this example: "a800a8"

:SYSTem:SCReendump:LINE?

Syntax	<code>:SYSTem:SCReendump:LINE? <int1></code>
Parameters	int1 is a integer in the range of 0 to 479.
Command	There is only the query form available.
Query	Returns one pixel line (of 480) of the screen as pairs of hexadecimal values.
Example	<code>:SYST:SCR:LIN? 345</code> String returned in this example: "0201420fff00f600010f0201080b1e0f1e0b"

:SYSTem:SCReendump:REmote

Syntax	<code>:SYSTem:SCReendump:REmote <PredefExpr></code>
Parameters	PredefExpr is one of the following predefined expressions: ON OFF. Default is ON.
Command	This command removes the Remote display when it is set to OFF. This is useful for screen dumps.
Query	Reads and returns the current setting.
Example	<code>:SYST:SCR:REM OFF</code> <code>:SYST:SCR:REM?</code> Returns the following string: "OFF"

:SYSTem:PRINTER:TYPE

Syntax	<code>:SYSTem:PRINTER:TYPE <PredefExpr></code>
Parameters	PredefExpr is one of the following predefined expressions: OFF PCL. Default is OFF.
Command	This command set the printer type for a hardcopy of the display. At the moment, only PCL capable printer like HP Laserjet are supported. The printer has to be connected to the serial port (normally with a RS232/Centronics converter), therefore remote control of printer output is only possible via TCP/IP. The serial interface has to be set to the maximum possible baudrate of the printer/converter with command SYSTem:COM-Municate:SER:BAUDrate. The output to the printer is started with command HCOPy[:IMMEDIATE].
Query	Reads and returns the current setting.
Example	<code>:SYSTem:PRINTER:TYPE PCL</code> <code>:SYSTem:PRINTER:TYPE?</code> Returns the following string: "PCL"

:SYSTem:PRINTER:BAUDrate

Syntax	<code>:SYSTem:PRINTER:BAUDrate <int1></code>
Parameters	int1 is an integer. The minimum value for int1 is 300, the maximum value is 57600. The default value for int1 is 19200. Valid values are 300, 1200, 2400, 4800, 9600, 19200, 38400 and 57600.
Command	Sets the data rate for the serial port if a printer is connected. The print output can be started with HCOPy. Only the data rate can be changed; all other parameters are fixed. The number of bits per character is set to 8, the number of stop bits is set to 1 and parity is set to NO.
Query	Reads and returns the serial interface data rate currently set.
Example	<code>:SYST:PRINTER:BAUD 9600</code> <code>:SYST:PRINTER:BAUD?</code> String returned in this example: 9600.

Sense commands

These commands affect the spectrum analyzer settings, start measurements and return results.

:SENSe:BANDwidth:RESolution

Syntax	<code>:SENSe:BANDwidth:RESolution <real1></code>
Parameters	real1 is a floating point real number. The minimum value for real1 is 100, the maximum value 1000000. real1 can be set as 1×10^n or 3×10^n . The default value for real1 is 1000000.
Command	This command sets the resolution bandwidth of the 9101, in Hertz.
Query	Reads and returns the current setting.

Example	<code>:SENSe:BANDwidth:RESolution 300000</code> <code>:SENSe:BANDwidth:RESolution?</code> The value returned in this example is: "300000".
----------------	--

:SENSe:BANDwidth:RESolution:AUTo

Syntax	<code>:SENSe:BANDwidth:RESolution:AUTo <PredefExpr></code>
Parameters	PredefExpr is one of the following predefined expressions: ON OFF. Default is ON.
Command	Switches the automatic selection of the bandwidth resolution on or off. If switched on, the 9101 selects the resolution bandwidth depending on the current span, video bandwidth, and sweep time.
Query	Reads and returns the current setting.
Example	<code>:SENSe:BANDwidth:RESolution:AUTo ON</code> <code>:SENSe:BANDwidth:RESolution:AUTo?</code> Returns the following string: "ON"

:SENSe:BANDwidth:VIDeo

Syntax	<code>:SENSe:BANDwidth:VIDeo <real1></code>
Parameters	real1 is a floating point real number. The minimum value for real1 is 10, the maximum value 1000000. Possible values are: 10, 100, 300, 1000, 3000, 10000, 30000, 100000, 300000, 1000000. The default value for real1 is 1000000.
Command	Sets the video bandwidth of the 9101. The unit of real1 is Hertz.
Query	Reads and returns the current setting.
Example	<code>:SENSe:BANDwidth:VIDeo 300000</code> <code>:SENSe:BANDwidth:VIDeo?</code> The value returned in this example is: "300000".

:SENSe:BANDwidth:VIDeo:AUTo

Syntax	<code>:SENSe:BANDwidth:VIDeo:AUTo <PredefExpr></code>
Parameters	PredefExpr is one of the following predefined expressions: ON OFF . Default is ON.
Command	Switches the automatic selection of the video bandwidth on or off. If switched on, the 9101 selects the video bandwidth depending on the current span, resolution bandwidth, and sweep time.
Query	Reads and returns the current setting.
Example	<code>:SENSe:BANDwidth:VIDeo:AUTo OFF</code> <code>:SENSe:BANDwidth:VIDeo:AUTo?</code> Returns the following string: "OFF"

:SENSe:FREQuency:CENTer

Syntax	<code>:SENSe:FREQuency:CENTer <real1></code>
---------------	--

Parameters	real1 is a floating point real number. The minimum value for real1 is 0, the maximum value 4000000000. real1 can be set in multiples of 1000. The default value for real1 is 1800000000.
Command	Sets the center frequency of the 9101, in Hertz. When a new center frequency is selected, this affects the start and stop frequencies, leaving the span unchanged so long as the new start and stop frequencies do not exceed the limits of the 9101.
Query	Returns the current setting.
Example	<pre>:SENSe:FREQuency:CENTER 1500000000 :SENSe:FREQuency:CENTER? The value returned in this example is: "1500000000".</pre>

:SENSe:FREQuency:SPAN

Syntax	<code>:SENSe:FREQuency:SPAN <real1></code>
Parameters	real1 is a floating point real number. The minimum value for real1 is 0, the maximum value 4000000000. The minimum resolution possible for real1 is 1000. The default value for real1 is 3600000000.
Command	Sets the frequency span, i.e. the measured bandwidth, in Hertz. A new frequency span setting will leave the center frequency unchanged but affect start and stop frequencies; only if the new start or stop frequency exceeds a limit of the 9101, the center frequency will be changed accordingly.
Query	Reads and returns the current setting.
Example	<pre>:SENSe:FREQuency:SPAN 1500000000 :SENSe:FREQuency:SPAN? The value returned in this example is: "1500000000".</pre>

:SENSe:FREQuency:SPAN:FULL

Syntax	<code>:SENSe:FREQuency:SPAN:FULL</code>
Parameters	There are no parameters.
Command	Sets the 9101 to the maximum supported frequency span. This command affects start, stop and corresponding center frequency. Note: If you set the span to 0, the 9101 will perform measurements in the time rather than the frequency domain.
Query	There is no query form of this command available.
Example	<pre>:SENS:FREQ:SPAN:FULL Sets the start frequency of the 9101 to 0 and the stop frequency to 4 GHz.</pre>

:SENSe:FREQuency:START

Syntax	<code>:SENSe:FREQuency:START <real1></code>
Parameters	real1 is a floating point real number. The minimum value for real1 is 0, the maximum value 4000000000. The minimum resolution possible for real1 is 1000. The default value for real1 is 0.
Command	Sets the start frequency of the 9101, in Hertz. This command leaves the span as is but affects the center frequency and the stop frequency.

Query	Reads and returns the current setting.
Example	<pre>:SENSe:FREQuency:STARt 1500000000 :SENSe:FREQuency:STARt?</pre> <p>The value returned in this example is: "1500000000".</p>

:SENSe:FREQuency:STOP

Syntax	<code>:SENSe:FREQuency:STOP <real1></code>
Parameters	<p><code>real1</code> is a floating point real number.</p> <p>The minimum value for <code>real1</code> is 100000, the maximum value 4000000000. The minimum resolution possible for <code>real1</code> is 1000. The default value for <code>real1</code> is 3600000000.</p>
Command	Sets the stop frequency of the measured bandwidth, in Hertz. This command leaves the span unchanged but affects the center frequency and the start frequency.
Query	Reads and returns the current setting.
Example	<pre>:SENSe:FREQuency:STOP 2500000000 :SENSe:FREQuency:STOP?</pre> <p>The value returned in this example is: "2500000000".</p>

:SENSe:FREQuency:STOP:MAX

Syntax	<code>:SENSe:FREQuency:MAX?</code>
Parameters	There are no parameters.
Command	There is only the query form available.
Query	Returns the maximum stop frequency supported by the 9101 at hand.
Example	<code>:SENS:FREQ:STOP:MAX?</code>

:SENSe:FREQuency:MODE

Syntax	<code>:SENSe:FREQuency:MODE <PredefExpr></code>
Parameters	<code>PredefExpr</code> is one of the following predefined expressions: <code>CSPan</code> <code>SSTop</code> <code>SSPAN</code> . Default is <code>CSPan</code> .
Command	Defines which frequency mode is active. Three modes are available: Center-Span, Start-Stop, Start-Span.
Query	Returns the current setting.
Example	<pre>:SENSe:FREQuency:MODE CSPan :SENSe:FREQuency:MODE?</pre> <p>Returns the following string: "CSPan"</p>

:SENSe:FREQuency:FSTep

Syntax	<code>:SENSe:FREQuency:FSTep <real1></code>
Parameters	<code>real1</code> is a floating point real number. The minimum value for <code>real1</code> is 0, the maximum value 1000000000. The minimum resolution possible for <code>real1</code> is 1000. The default value for <code>real1</code> is 360000000.

Command	Sets the step size for the center frequency setting using the cursor keys in manual mode.
Query	Reads and returns the current setting.
Example	<pre>:SENSe:FREQuency:FSTep 2.5E6 :SENSe:FREQuency:FST?</pre> Value returned in this example: 2500000

:SENSe:FREQuency:FSTep:AUTo

Syntax	<code>:SENSe:FREQuency:FSTep:AUTo <PredefExpr></code>
Parameters	PredefExpr is one of the following predefined expressions: ON OFF. Default is ON.
Command	Enables or disables the automatic selection of the step size for the center frequency setting using the cursor keys in manual mode.
Query	Reads and returns the current setting.
Example	<pre>:SENSe:FREQuency:FSTep:AUTo ON :SENSe:FREQuency:FSTep:AUTo?</pre> Returns the following string: "ON"

:SENSe:CPOWer:SPAN

Syntax	<code>:SENSe:CPOWer:SPAN <PredefExpr></code>
Parameters	PredefExpr is one of the following predefined expressions: FULL SINGLE. Default is FULL.
Command	Sets the channel power display mode of the 9101. FULL selects the whole system spectrum. SINGLE displays the spectrum of the selected channel.
Query	Reads and returns the current setting.
Example	<pre>:CPOWer:SPAN SINGLE :SENSe:CPOWer:SPAN?</pre> Returns the following string: "SINGLE"

:SENSe:CPOWer:CHANnel

Syntax	<code>:SENSe:CPOWer:CHANnel <int1></code>
Parameters	int1 is an integer. The minimum value for int1 is 0, the maximum is 1000000. The default value is 0.
Command	Sets the actual channel number which is displayed in SINGLE and FULL mode.
Query	Reads and returns the current setting.
Example	<pre>:SENSe:CPOWer:CHANnel 50 :SENSe:CPOWer:CHANnel?</pre> The value returned in this example is: "50".

:SENSe:CPoWer:OBW

Syntax	<code>:SENSe:CPoWer:OBW <int1></code>
Parameters	int1 is a integer. The minimum value for int1 is 5, the maximum is 99. The default value for int1 is 90.
Command	Sets the percentage value for which the 9101 shall determine the occupied bandwidth (channel power mode).
Query	Reads and returns the current setting.
Example	<pre>:SENSe:CPoWer:OBW 20 :SENSe:CPoWer:OBW?</pre> <p>The value returned in this example is: " 20 "</p>

:SENSe:CPoWer:MEASure

Syntax	<code>:SENSe:CPoWer:MEASure <PredefExpr></code>
Parameters	PredefExpr is one of the following predefined expressions: CPoWer ACPR OBW. Default is CPoWer.
Command	Starts measurements of the type described by PredefExpr.
Query	Reads and returns the current setting.
Example	<pre>:SENSe:CPoWer:MEASure ACPR :SENSe:CPoWer:MEASure?</pre> <p>Returns the following string: " ACPR ".</p>

:SENSe:SWEep:TIME

Syntax	<code>:SENSe:SWEep:TIME <real1></code>
Parameters	real1 is a floating point real number. The minimum value for real1 is 0.0, the maximum value 250.0. The minimum resolution possible for real1 is 0.0001. The default value for real1 is 0.0432.
Command	Sets the sweep time, i.e. the measurement time to cover the full frequency span. real1 is the time in seconds.
Query	Reads and returns the current setting.
Example	<pre>:SENSe:SWEep:TIME 0.3 :SENSe:SWEep:TIME?</pre> <p>The value returned in this example is: " 0.3 ".</p>

:SENSe:SWEep:TIME:AUTO

Syntax	<code>:SENSe:SWEep:TIME:AUTO <PredefExpr></code>
Parameters	PredefExpr is one of the following predefined expressions: ON OFF. Default is ON.
Command	Switches the automatic selection of the sweep time on or off. If turned on, the 9101 will decide on the best sweep time depending on the current settings of span, resolution bandwidth and video bandwidth.
Query	Reads and returns the current setting.

Example	<code>:SENSe:SWEep:TIME:AUTo ON</code> <code>:SENSe:SWEep:TIME:AUTo?</code> Returns the following string: "ON".
----------------	---

:SENSe:SWEep:STATE

Syntax	<code>:SENSe:SWEep:STATE <PredefExpr>[,<int1>]</code>
Parameters	<code>PredefExpr</code> is one of the following predefined expressions: <code>CONTinuous</code> <code>SINGle</code> <code>HOLD</code> . Default is <code>CONTinuous</code> . <code>int1</code> is an optional integer. It is only valid for <code>SINGle</code> sweeps. The minimum value for <code>int1</code> is 1, the maximum is 999. The default value is 1.
Command	Sets the measurement display mode of the 9101. <code>CONTinuous</code> selects repetitive measurements. <code>SINGle</code> lets the 9101 perform and display one (or a limited number of) measurement(s). The optional second parameter indicates how often a sweep will be performed. <code>HOLD</code> immediately stops any ongoing measurement.
Query	Reads and returns the current setting.
Example	<code>:SENSe:SWEep:STATE SINGLE</code> <code>:SENSe:SWEep:STATE?</code> Returns the following string: "SINGLE".

:SENSe:TRIGger

Syntax	<code>:SENSe:TRIGger <PredefExpr></code>
Parameters	<code>PredefExpr</code> is one of the following predefined expressions: <code>OFF</code> <code>VIDeo</code> . Default is <code>OFF</code> .
Command	Sets the trigger mode of the 9100. <code>OFF</code> means no trigger is active. <code>VIDeo</code> activates the trigger at chosen level.
Query	Reads and returns the current setting.
Example	<code>SENSe:TRIGger VIDeo</code> <code>:SENSe:TRIGger?</code> Returns the following string: "VIDeo".

:SENSe:TRIGger:LEVel

Syntax	<code>:SENSe:TRIGger:LEVel <real1></code>
Parameters	<code>real1</code> is a floating point real number. The minimum value for <code>real1</code> is -100, the maximum value 30.0. The minimum resolution possible for <code>real1</code> is 0.1. The default value is -40.
Command	Sets the trigger level which is active, if <code>SENSe:TRIGger</code> is set to <code>VIDeo</code> . <code>real1</code> is the level in dBm.
Query	Reads and returns the current setting.
Example	<code>:SENSe:TRIGger:LEVel -10</code> <code>:SENSe:TRIGger:LEVel?</code> The value returned in this example is: "-10".

:SENSe:TRIGger:EDGE

Syntax	<code>:SENSe:TRIGger:EDGE <PredefExpr></code>
Parameters	PredefExpr is one of the following predefined expressions: POSitive NEGative. Default is POSitive.
Command	Sets either the positive or the negative slope for the trigger.
Query	Reads and returns the current setting.
Example	<pre>:SENSe:TRIGger:EDGE NEGative :SENSe:TRIGger?</pre> <p>Returns the following string: "NEGative".</p>

:SENSe:DEMod[:MODulation]

Syntax	<code>:SENSe:DEMod[:MODulation] <PredefExpr></code>
Parameters	PredefExpr is one of the following predefined expressions: OFF AM FM. Default is OFF.
Command	Sets the demodulation mode, which can be off, AM (amplitude modulation) or FM (frequency modulation). FM demodulation is performed in a 30 kHz bandwidth.
Query	Reads and returns the current setting.
Example	<pre>:SENSe:DEMod FM :SENSe:DEMod:MODulation?</pre> <p>Returns the following string: "FM"</p>

:SENSe:DEMod:DEMod

Syntax	<code>:SENSe:DEMod:DEMod <PredefExpr></code>
Parameters	PredefExpr is one of the following predefined expressions: PERManent ATMarker. Default is PERManent.
Command	Sets the demodulation permanent to center frequency or at marker.
Query	Reads and returns the current setting.
Example	<pre>:SENSe:DEMod:DEMod PERManent :SENSe:DEMod:DEMod?</pre> <p>Returns the following string: "PERManent"</p>

:SENSe:DEMod:VOLume

Syntax	<code>:SENSe:DEMod:VOLume <int1></code>
Parameters	int1 is an integer. The minimum value for int1 is 0, the maximum is 100. The default value for int1 is 50.
Command	Sets the volume of the demodulated signal in percent.
Query	Reads and returns the current setting.
Example	<pre>:SENSe:DEMod:VOLume 20 :SENSe:DEMod:VOLume?</pre> <p>The value returned in this example is: "20".</p>

:SENSe:DEMod:DURation

Syntax	<code>:SENSe:DEMod:DURation <real1></code>
Parameters	real1 is a floating point real number. The minimum value for real1 is 0, the maximum value 10. The minimum resolution is 0.001. The default value is 2.
Command	Sets the duration of the demodulated signal in seconds.
Query	Reads and returns the current setting.
Example	<code>:SENSe:DEMod:DURation 10</code> <code>:SENSe:DEMod:DURation?</code> The value returned in this example is: "10".

:SENSe:DETector:FUNCTION

Syntax	<code>:SENSe:DETector:FUNCTION <PredefExpr></code>
Parameters	PredefExpr is one of the following predefined expressions: POSNeg SAMPLE POSitive NEGative . Default is POSNeg.
Command	Defines which measurement values shall be displayed. The 9101 takes far more measurements than can be displayed on the screen, so several results are summarized into one. POSNeg indicates both the maximum and minimum values for each frequency point in the form of a straight vertical line between these values. SAMPLE lets the 9101 randomly select one of the measurement values for each frequency point. POSitive lets the 9101 pick the highest value. NEGative lets the 9101 select the lowest value.
Query	Reads and returns the current setting.
Example	<code>:SENSe:DETector:FUNCTION SAMPLE</code> <code>:SENSe:DETector:FUNCTION?</code> Returns the following string: "SAMPLE".

:SENSe:TRACe:A[:STATE]

Syntax	<code>:SENSe:TRACe:A[:STATE] <PredefExpr></code>
Parameters	PredefExpr is one of the following predefined expressions: ACTual MAXHold MINHold HOLD AVG OFF. Default is ACTual.
Command	Sets the display mode for Trace A. ACTual shows measurement by measurement. MAXHold displays the maximum value for each frequency point over all the measurements. MINHold shows the minimum value for each frequency point over all the measurements. HOLD stops the measurement immediately. AVG displays, for each frequency point, an average value over all the measurements. OFF switches the trace off.
Query	Reads and returns the current settings.
Example	<code>:SENSe:TRACe:A MAXHold</code> <code>:SENSe:TRACe:A:STATE?</code> Returns the following string: "MAXHold".

:SENSe:TRACe:A:FETCh?

Syntax	<code>:SENSe:TRACe:A:FETCh? <PredefExpr></code>
Parameters	PredefExpr is one of the following predefined expressions: ALL MINimum MAXimum FREQuency FMINimum FMAXimum.
Command	There is solely a query form of this command available.
Query	Reads and returns the data of trace A depending on the parameter: Param ALL returns: <min>,<max>,<freq>,<min>,<max>,<freq>, Param MIN returns: <min>,<min>, Param MAX returns: <max>,<max>, Param FREQ returns: <freq>,<freq>, Param FMIN returns: <min>,<freq>,<min>,<freq>, Param FMAX returns: <max>,<freq>,<max>,<freq>,
Example	<code>:SENSe:TRACe:A:FETCh? ALL</code> Returns the following string: "1000000.0,-50.3,-45.5,1001000.0,-53.4,-48.2,...".

:SENSe:TRACe:B[:STATE]

Syntax	<code>:SENSe:TRACe:B[:STATE] <PredefExpr></code>
Parameters	PredefExpr is one of the following predefined expressions: ACTual MAXHold MINHold HOLD AVG OFF. Default is OFF.
Command	Sets the display mode for Trace B. ACTual shows measurement by measurement. MAXHold displays the maximum value for each frequency point over all the measurements. MINHold shows the minimum value for each frequency point over all the measurements. HOLD stops the measurement immediately. AVG displays, for each frequency point, an average value over all the measurements. OFF switches Trace B off.
Query	Reads and returns the current settings.
Example	<code>:SENSe:TRACe:B MAXHold</code> <code>:SENSe:TRACe:B?</code> Returns the following string: "MAXHold".

:SENSe:TRACe:B:FETCH?

Syntax	<code>:SENSe:TRACe:B:FETCH? <PredefExpr></code>
Parameters	PredefExpr is one of the following predefined expressions: ALL MINimum MAXimum FREQuency FMINimum FMAXimum.
Command	There is solely a query form of this command available.
Query	Reads and returns the data of trace B depending on the parameter: Param ALL returns: <min>,<max>,<freq>,<min>,<max>,<freq>, Param MIN returns: <min>,<min>, Param MAX returns: <max>,<max>, Param FREQ returns: <freq>,<freq>, Param FMIN returns: <min>,<freq>,<min>,<freq>, Param FMAX returns: <max>,<freq>,<max>,<freq>,
Example	<code>:SENSe:TRACe:B:FETCH? ALL</code> Returns the following string: "1000000.0,-50.3,-45.5,1001000.0,-53.4,-48.2,..."

:SENSe:TRACe:AVGFactor

Syntax	<code>:SENSe:TRACe:AVGFactor <int1></code>
Parameters	int1 is an integer. The minimum value for int1 is 1, the maximum is 125. The default value for int1 is 5.
Command	Sets the trace averaging factor.
Query	Reads and returns the current setting.
Example	<code>:SENSe:TRACe:AVGFactor 10</code> <code>:SENSe:TRACe:AVGFactor?</code> Value returned in this example: "10".

:SENSe:TRACe:CLEar

Syntax	<code>:SENSe:TRACe:CLEar</code>
Parameters	There are no parameters.
Command	Clears the current trace.
Query	There is no query form of this command available.
Example	<code>:SENSe:TRACe:CLEar</code>

:SENSe:TRACe:COPY

Syntax	<code>:SENSe:TRACe:COPY <PredefExpr>[,<int>]</code>
Parameters	PredefExpr is one of the following predefined expressions: ATOB BTOA.
Command	Copies trace A to B or vice versa.
Query	There is no query form of this command available.
Example	<code>:SENSe:TRACe:COPY ATOB</code>

:SENSe:TRACe:DATA?

Syntax	<code>:SENSe:TRACe:DATA? <PredefExpr>[,<int>]</code>
Parameters	<code>PredefExpr</code> is one of the following predefined expressions: A B which returns Trace A or Trace B.
Command	There is solely a query form of this command available.
Query	First return string: "ALL" or "MINM". "ALL" returns, if minimum and maximum values are identical, e.g. "Max hold" or "Min hold". 501 values returned, no redundant data is sent. "MINM" returns, if minimum and maximum Values are NOT identical, e.g. "ACTUAL" or "Average". 1002 Values returned, the first 501 values are the minimum values and after them follow the maximum values. Second return string: the trace data. Every level value is represented by 3 bytes. The following formula is used to calculate the level value in dBm: Level = Hexvalue / 10 - 200.
Example	<code>:SENSe:TRACe:DATA? A</code> The values returned in this example are: "ALL" , "38D36F37238B38D3A63A73BC4103A63E33A13CB..."

:SENSe:TRACe:DATA:LIMIT

Syntax	<code>:SENSe:TRACe:DATA:LIMIT?</code>
Parameters	There are no parameters.
Command	There is solely a query form of this command available.
Query	Reads and returns the Pass/Fail criteria for the recently received trace with <code>SENSe:TRACe:DATA?.</code> There will be returned one of the predefined expressions: PASS FAIL
Example	<code>:SENSe:TRACe:DATA:LIMIT?</code> Returns the following string: "PASS"

:SENSe:TRACe:MATH

Syntax	<code>:SENSe:TRACe:MATH?</code>
Parameters	There are no parameters.
Command	There is solely a query form of this command available.
Query	Reads and returns the normalized criteria for the current trace. There will be returned one of the predefined expressions: NA UNNormalized NORMALized
Example	<code>:SENSe:TRACe:MATH?</code> Returns the following string: "NORM"

:SENSe:TRACe:MATH:[A|B]

Syntax	<code>:SENSe:TRACe:MATH:[A B] <PredefExpr></code>
Parameters	<code>PredefExpr</code> is one of the following predefined expressions: OFF SUBtract NORMALize. Default is OFF.
Command	Switches math. function for traces A and B off or to Subtraction or to Normalize.
Query	Reads and returns the current setting.

Example	<code>:SENSe:TRACe:MATH:A SUB</code> <code>:SENSe:TRACe:MATH:A?</code> Returns the following string: "SUB"
----------------	--

:SENSe:TRACe:MATH:OFFSet

Syntax	<code>:SENSe:TRACe:MATH:OFFSet <real1></code>
Parameters	real1 is a floating point real number.
Command	This command sets the trace offset for the subtracted trace (A-B->A trace).
Query	Reads and returns the current setting.
Example	<code>:SENSe:TRACe:MATH:OFFSet -20</code> <code>:SENSe:TRACe:MATH:OFFSet?</code> The value returned in this example is: "-20".

:SENSe:REFLevel

Syntax	<code>:SENSe:REFLevel <real1></code>
Parameters	real1 is a floating point real number. The minimum and maximum value for real1 depend on the unit set by :SENS:REFLevel:UNIT. When the unit is set to dBm, the minimum value is -100, the maximum value is 30. When the unit is set to dBuV, the minimum value is 7, the maximum value is 137. When the unit is set to dBmV, the minimum value is -53, the maximum value is 77. When the unit is set to dBV, the minimum value is -113, the maximum value is 17. The default value for real1 is 0 dBm.
Command	This command sets the reference level of the 9101 (0 dB line), in the unit selected with the :SENS:REFLevel:UNIT command.
Query	Reads and returns the current setting.
Example	<code>:SENSe:REFLevel -50</code> <code>:SENSe:REFLevel?</code> The value returned in this example is: "-50".

:SENSe:REFLevel:UNIT

Syntax	<code>:SENSe:REFLevel:UNIT <PredefExpr></code>
Parameters	PredefExpr is one of the following predefined expressions: DBM DBUV DBMV DBV V MV UV MW UW . Default is DBM.
Command	Defines the unit for the reference level to logarithmic units (dBm, dB μ V, dBmV or dBV) or linear units (V, mV, μ V, mW, μ W). It also affects the unit in which results (on the vertical axis) are displayed.
Query	Reads and returns the current setting.
Example	<code>:SENSe:REFLevel:UNIT DBMV</code> <code>:SENSe:REFLevel:UNIT?</code> Returns the following string: "DBMV"

:SENSe:STATE

Syntax	<code>:SENSe:STATE?</code>
Parameters	There are no parameters.
Command	There is solely a query form of this command available.
Query	Reads and returns the Uncal state.
Example	<code>:SENSe:STATE?</code> Returns the following string: "ON".

:SENSe:MEASure

Syntax	<code>:SENSe:MEASure <PredefExpr></code>
Parameters	<code>PredefExpr</code> is one of the following predefined expressions: NONE CPOWER ACPR OBW. Default is NONE.
Command	Starts measurements of the type described by <code>PredefExp</code> .
Query	Reads and returns the current setting.
Example	<code>:SENSe:MEASure ACPR</code> <code>:SENSe:MEASure?</code> Returns the following string: "ACPR"

:SENSe:MEASure:OBW

Syntax	<code>:SENSe:MEASure:OBW <int1></code>
Parameters	<code>int1</code> is an integer. The minimum value for <code>int1</code> is 5, the maximum is 99. The default value for <code>int1</code> is 90.
Command	Sets the percentage value for which the 9101 shall determine the occupied bandwidth (spectrum analyzer mode).
Query	Reads and returns the current setting.
Example	<code>:SENSe:MEASure:OBW 20</code> <code>:SENSe:MEASure:OBW?</code> The value returned in this example is: "20".

:SENSe:MEASure:CHANnel:WIDTH

Syntax	<code>:SENSe:MEASure:CHANnel:WIDTH <real1></code>
Parameters	<code>real1</code> is a floating point real number. The minimum value for <code>real1</code> is 100000, the maximum value 200000000. <code>real1</code> can be set in multiples of 1000. The default value for <code>real1</code> is 5000000.
Command	Sets the actual channel width in spectrum analyzer mode.
Query	Reads and returns the current setting.
Example	<code>:SENSe:MEASure:CHANnel:WIDTH 150000000</code> <code>:SENSe:MEASure:CHANnel:WIDTH?</code> The value returned in this example is: "150000000".

:SENSe:MEASure:CHANnel:SPACing

Syntax	<code>:SENSe:MEASure:CHANnel:SPACing <real1></code>
Parameters	real1 is a floating point real number. The minimum value for real1 is 100000, the maximum value 2000000000. real1 can be set in multiples of 1000. The default value for real1 is 10000000.
Command	Sets the actual channel spacing in spectrum analyzer mode.
Query	Reads and returns the current setting.
Example	<code>:SENSe:MEASure:CHANnel:SPACing 1500000000</code> <code>:SENSe:MEASure:CHANnel:SPACing?</code> The value returned in this example is: "1500000000".

:SENSe:MEASure:ADJSettings

Syntax	<code>:SENSe:MEASure:ADJSettings</code>
Parameters	There are no parameters.
Command	Adjusts settings in display made with ...CHAN:WIDTh and ...SPACing in the corresponding measure mode CPOWer, ACPr or OBW.
Query	Reads and returns the current setting.
Example	<code>:SENSe:MEASure:ADJSettings</code>

Input commands

With these commands, the input stage of the 9101 Handheld Spectrum Analyzer is affected.

WARNING

The maximum input power level at the **RF IN** connector is 30 dBm (1 W). Higher input levels may result in serious damage of the instrument.

:INPut:ATTenuation

Syntax	<code>:INPut:ATTenuation <real1></code>
Parameters	real1 is a floating point real number. The minimum value for real1 is 0, the maximum value 50. real1 can be set in steps of 10. The default value for real1 is 30.
Command	This command sets the RF preattenuation of the Willtek 9101. The physical dimension of real1 is dB.
Query	Reads and returns the current setting.
Example	<code>:INP:ATT 20</code> <code>:INPut:ATTenuation?</code> The value returned is in this example: "20".

:INPut:ATTenuation:AUTO

Syntax	<code>:INPut:ATTenuation:AUTO <PredefExpr></code>
Parameters	PredefExpr is one of the following predefined expressions: ON OFF. Default is ON.
Command	Lets the 9101 select the preattenuation depending on the reference level.
Query	Reads and returns the current setting.
Example	<code>:INP:ATT:AUTO ON</code> <code>:INPut:ATTenuation:AUTO?</code> Returns the following string: "ON"

:INPut:IMPedance

Syntax	<code>:INPut:IMPedance <PredefExpr></code>
Parameters	PredefExpr is one of the following predefined expressions: IMP50 IMP75. Default is IMP50.
Command	Lets the 9101 select between 50 Ω and 75 Ω impedance.
Query	Reads and returns the current setting.
Example	<code>:INP:IMP IMP75</code> <code>:INPut:IMPedance?</code> Returns the following string: "IMP75"

:INPut:EDEvice

Syntax	<code>:INPut:EDEvice <PredefExpr></code>
Parameters	PredefExpr is one of the following predefined expressions: ON OFF. Default is OFF.
Command	Switches the external device compensation on or off. A corresponding file has to be loaded first with command <code>MMEMory:LOAD:EDEvice</code> .
Query	Reads and returns the current setting.
Example	<code>:INP:EDEvice ON</code> <code>:INPut:EDEvice?</code> Returns the following string: "ON"

:INPut:AFACtor

Syntax	<code>:INPut:AFACtor <PredefExpr></code>
Parameters	PredefExpr is one of the following predefined expressions: OFF ON. Default is OFF.
Command	Switches the antenna factor compensation on or off. A corresponding file has to be loaded first with command <code>MMEMory:LOAD:AFACtor</code> .
Query	Reads and returns the current setting.
Example	<code>:INP:AFACtor ON</code> <code>:INPut:AFACtor?</code> Returns the following string: "ON"

:INPut:CFACtor

Syntax	<code>:INPut:CFACtor <PredefExpr></code>
Parameters	<code>PredefExpr</code> is one of the following predefined expressions: OFF ON. Default is OFF.
Command	Switches the cable factor compensation on or off. A corresponding file has to be loaded first with command <code>MMEMory:LOAD:CFACtor</code> .
Query	Reads and returns the current setting.
Example	<code>:INPut:CFACtor ON</code> <code>:INPut:CFACtor?</code> Returns the following string: "ON"

MMemory commands

With the MMemory commands, you can fully exploit the capabilities of the instrument to store and reload measurement results in its nonvolatile memory.

:MMEMory:STORe:STATE

Syntax	<code>:MMEMory:STORe:STATE <string1></code>
Parameters	<code>string1</code> is a string (text) parameter. The maximum length of <code>string1</code> is 11 characters.
Command	Stores the actual parameter settings of the 9101 in the SETTINGS directory on the flash disk in a file named <code><string1></code> .
Query	Reads and returns the file name last stored with this command.
Example	<code>:MMEMory:STORe:STATE "sett3"</code>

:MMEMory:STORe:TRACe

Syntax	<code>:MMEMory:STORe:TRACe <string1>[,<PredefExp>]</code>
Parameters	<code>string1</code> is a string (text) parameter. The maximum length of <code>string1</code> is 11 characters. <code>PredefExpr</code> is an optional parameter and one of the following predefined expressions: A B. Default is A.
Command	Stores the current trace A or B and the parameter settings on the flash disk in the TRACE directory in a file named <code><string1></code> .
Query	Reads and returns the file name last stored with this command.
Example	<code>:MMEMory:STORe:TRACe "GSM900",A</code>

:MMEMORY:STORE:LIMIT

Syntax	<pre>:MMEMORY:STORE:LIMIT <string1>{ ,<PredefExpr>,<x1>,<y1>,<x2>,<y2>... } :MMEMORY:STORE:LIMIT? <string1></pre>
Parameters	<p>string1 is a string (text) parameter. The maximum length of string1 is 11 characters.</p> <p>PredefExpr is one of the following predefined expressions: MINimum MAXimum.</p> <p>x1 y1 x2 y2 are floating point real numbers.</p> <p>The minimum value for all these reals is 0, the maximum value for the x values is 10, the maximum value for the y values is 8, the resolution for all real values is 0.1 and the default is 0.</p>
Command	<p>Stores the limits defined as lines in the LIMIT directory on the flash disk in a file named <string1>. A line is defined by a parameter set PredefExpr,x1,y1,x2,y2. Up to 30 parameter sets can follow the string parameter.</p>
Query	Reads and returns the parameter sets of the limit file which is given as parameter.
Example	<pre>:MMEMORY:STORE:LIMIT "lim2",UPP,2.3,4.5,6.9,7,2,LOW,2.3,1.5,6.9,3,2 :MMEMORY:STORE:LIMIT? "lim2" String returned: UPP,2.3,4.5,6.9,7,2,LOW,2.3,1.5,6.9,3,2</pre>

:MMEMORY:STORE:CHANnel

Syntax	<pre>:MMEMORY:STORE:CHANnel <string1>, <int1>, <int2>, <real1>, <real2>, <real3>, <real4></pre>
Parameters	<p>string1 is a string (text) parameter. The maximum length of string1 is 11 characters.</p> <p>int1 is an integer. The minimum value for int1 is 1, the maximum is 1000000. The default value is 100.</p> <p>int2 is an integer. The minimum value for int2 is 0, the maximum is 1000000. The default value is 0.</p> <p>real1 is a floating point real number. The minimum value for real1 is 0, the maximum value 4000000000. The minimum resolution is 1000. The default value is 1000000.</p> <p>real2 is a floating point real number. The minimum value for real2 is 0, the maximum value 4000000000. The minimum resolution is 1000. The default value is 1000000.</p> <p>real3 is a floating point real number. The minimum value for real3 is 0, the maximum value 4000000000. The minimum resolution is 1000. The default value is 1000000000.</p> <p>real4 is a floating point real number. The minimum value for real4 is -100, the maximum value 30. The minimum resolution is 1. The default value is 0.</p>
Command	<p>This command stores the present communication system settings within the 9101 (e.g. for the channel power mode).</p> <p>string1 is the name of system settings file in which the parameters are stored. int1 sets the number of channels. int2 sets the start channel number. real1 sets the channel bandwidth over which to measure, in Hertz. real2 sets the frequency spacing of the channels, in Hertz. real3 sets the frequency of the first channel, in Hertz. real4 sets the system reference level (0 dB line).</p>
Query	Reads and returns the parameter set from the limit file given as a parameter.

Example

```
:MMEMORY:STORe:CHANnel "P-GSM9DO",125,0,400000,200000,935000000,0.0
```

:MMEMORY:STORe:EDEvice

Syntax

```
:MMEMORY:STORe:EDEvice <string1>, <real1freq>,
<real1lev>, <real2freq>, <real2lev>, ... <real100freq>,
<real100lev>
```

Parameters

`string1` is a string (text) parameter. The maximum length of `string1` is 11 characters.
`real1freq` to `real100freq` are floating point real numbers. The minimum value is 0, the maximum value 4e9. The minimum resolution is 1.
`real1lev` to `real100lev` are floating point real numbers. The minimum value is -100, the maximum value 30. The minimum resolution is 0.01.

Command

This command stores settings for external device compensation. `string1` is the name of the external device compensation file in which the parameters are stored. `realxfreq` and `realxlev` are pairs of frequency and level values to set the attenuation on the respective frequency. The instrument applies linear interpolation for the level between frequency points.

Query

Reads and returns the parameter sets of the external device compensation file which is given as a parameter.

Example

```
:MMEMORY:STORe:EDEvice "EXT_DEV2",1000000, -5.1,
2000000,-3.2,5000000,-4.1,10000000,-3.8,20000000,-2.6
:MMEM:STOR:EDEV? "EXT_DEV2"
String returned:1000000, -5.1,2000000,-3.2,5000000,-4.1,
10000000,-3.8,20000000,-2.6
```

:MMEMORY:STORe:CTYPe

Syntax

```
:MMEMORY:STORe:CTYPe <string1>,<real1>,<real2>,
<PredefExpr>,<real3>
```

Parameters

`string1` is a string (text) parameter. The maximum length of `string1` is 11 characters.
`real1` is a floating point real number. The minimum value is 1.0, the maximum value 20.0. The minimum resolution is 0.1. The default value is 1.0.
`real2` is a floating point real number. The minimum value is 0.0, the maximum value 2000.0. The minimum resolution is 0.01. The default value is 0.0.
`PredefExpr` is optional and one of the following predefined expressions:
`M100|FT100`. Default is `M100`.
`real3` is a floating point real number and also optional. The minimum value is 500000, the maximum value 4000000000. The minimum resolution is 0.1. The default value is 400000000.

Command

This command stores settings for cable types. `string1` is the name of the cable type file in which the parameters are stored. `real1` is the cable dielectric of the cable. `real2` is the attenuation of the cable per meter or feet. `PredefExpr` sets the attenuation to meter or feet. `real3` is the cable cutoff frequency.

Query

Reads and returns the parameter sets of the cable type file which is given as parameter.

Example

```
:MMEMORY:STORe:CTYPe
"EXT_DEV2",2.4,9.3,"MET",2000000000
```

:MMEMORY:STORE:AFACtor

Syntax	<code>:MMEMORY:STORE:AFACtor <string1>,<real1freq>,<real1lev>,<real2freq>,<real2lev>,...,<real100freq>,<real100lev></code>
Parameters	<code>string1</code> is a string (text) parameter. The maximum length of <code>string1</code> is 11 characters. <code>real1freq</code> to <code>real100freq</code> are floating point real numbers. The minimum value is 0, the maximum value $4e9$. The minimum resolution is 1. <code>real1lev</code> to <code>real100lev</code> are floating point real numbers. The minimum value is -100, the maximum value 30. The minimum resolution is 0.01.
Command	This command stores settings for cable types. <code>string1</code> is the name of the cable type file in which the parameters are stored. <code>real1</code> is the cable dielectric of the cable. <code>real2</code> is the attenuation of the cable per meter or feet. <code>PredefExpr</code> sets the attenuation to meter or feet. <code>real3</code> is the cable cutoff frequency.
Query	Reads and returns the parameter sets of the external device compensation file which is given as parameter.
Example	<code>:MMEMORY:STORE:AFACtor "AFAC2",1000000,-5.1,2000000,-3.2,5000000,-4.1,10000000,-3.8,20000000,-2.6</code>

:MMEMORY:STORE:CFACTOR

Syntax	<code>:MMEMORY:STORE:CFACTOR <string1>,<real1freq>,<real1lev>,<real2freq>,<real2lev>,...,<real100freq>,<real100lev></code>
Parameters	<code>string1</code> is a string (text) parameter. The maximum length of <code>string1</code> is 11 characters. <code>real1freq</code> to <code>real100freq</code> are floating point real numbers. The minimum value is 0, the maximum value $4e9$. The minimum resolution is 1. <code>real1lev</code> to <code>real100lev</code> are floating point real numbers. The minimum value is -100, the maximum value 30. The minimum resolution is 0.01.
Command	This command stores settings for cable factor compensation. <code>string1</code> is the name of cable factor compensation file in which the parameters are stored. <code>realxfreq</code> and <code>realxlev</code> are pairs of frequency and level values to set the attenuation on this frequency. Between frequency values there is a linear interpolation for the level.
Query	Reads and returns the parameter sets of the cable factor compensation file which is given as parameter.
Example	<code>:MMEMORY:STORE:CFACTOR "CFAC7",1000000,-5.1,2000000,-3.2,5000000,-4.1,10000000,-3.8,20000000,-2.6</code>

:MMEMORY[:LOAD]:FILElist[:TRACe]?

Syntax	<code>:MMEMORY:LOAD:FILElist[:TRACe]?</code> <PredefExpr>
Parameters	<code>PredefExpr</code> is an optional parameter and one of the following predefined expressions: <code>SHORT</code> <code>EXTENT</code> . Default is <code>SHORT</code> .
Command	There is only a query form of this command available.
Query	Reads and returns the list of files stored in the <code>TRACE</code> directory. The file names are separated by commas.

Example	<code>:MMEMORY:LOAD:FILElist:TRACE?</code> String returned in this example: "TRACE1", "TRACE2", "TRACE3"
----------------	--

:MMEMORY[:LOAD] :FILElist:STATE?

Syntax	<code>:MMEMORY[:LOAD] :FILElist:STATE? <PredefExpr></code>
Parameters	<code>PredefExpr</code> is an optional parameter and one of the following predefined expressions: <code>SHORT</code> <code>EXTENT</code> . Default is <code>SHORT</code> .
Command	There is only a query form of this command available.
Query	Reads and returns the list of files stored in the SETTINGS directory. The file names are separated by commas.
Example	<code>:MMEMORY:LOAD:FILElist:STATE?</code> String returned in this example: "SETT1", "SETT2", "SETT3"

:MMEMORY[:LOAD] :FILElist:LIMit?

Syntax	<code>:MMEMORY[:LOAD] :FILElist:LIMit? <PredefExpr></code>
Parameters	<code>PredefExpr</code> is an optional parameter and one of the following predefined expressions: <code>SHORT</code> <code>EXTENT</code> . Default is <code>SHORT</code> .
Command	There is only a query form of this command available.
Query	Reads and returns a comma-separated list of file names. Each file contains spectrum limit values stored on the 9101.
Example	<code>:MMEMORY:LOAD:FILElist:LIMit?</code> String returned in this example: "LIM1", "LIM2"

:MMEMORY[:LOAD] :FILElist:CHANnel?

Syntax	<code>:MMEMORY[:LOAD] :FILElist:CHANnel? <PredefExpr></code>
Parameters	<code>PredefExpr</code> is an optional parameter and one of the following predefined expressions: <code>SHORT</code> <code>EXTENT</code> . Default is <code>SHORT</code> .
Command	There is only a query form of this command available.
Query	Reads and returns a comma-separated list of file names. Each file contains channel values stored on the 9101.
Example	<code>:MMEMORY:LOAD:FILElist:CHANnel?</code> String returned: "GSM900", "GSM1800"

:MMEMORY[:LOAD] :FILElist:EDEvice?

Syntax	<code>:MMEMORY[:LOAD] :FILElist:EDEvice? <PredefExpr></code>
Parameters	<code>PredefExpr</code> is an optional parameter and one of the following predefined expressions: <code>SHORT</code> <code>EXTENT</code> . Default is <code>SHORT</code> .
Command	There is only a query form of this command available.

Query	Reads and returns a comma-separated list of file names. Each file contains external device compensation values stored on the 9101.
Example	<code>:MMEMORY:LOAD:FILElist:EDEvice?</code> String returned in this example: "EXT_DEV2", "EXT_DEV5"

:MMEMORY[:LOAD] :FILElist:CTYPe?

Syntax	<code>:MMEMORY[:LOAD] :FILElist:CTYPe? <PredefExpr></code>
Parameters	<code>PredefExpr</code> is an optional parameter and one of the following predefined expressions: <code>SHORT</code> <code>EXTent</code> . Default is <code>SHORT</code> .
Command	There is only a query form of this command available.
Query	Reads and returns a comma-separated list of file names. Each file contains a cable type stored on the 9101.
Example	<code>:MMEMORY:LOAD:FILElist:CTYPe?</code> String returned in this example: "CABLE2", "CABLE5"

:MMEMORY[:LOAD] :FILElist:AFACtor?

Syntax	<code>:MMEMORY[:LOAD] :FILElist:AFACtor? <PredefExpr></code>
Parameters	<code>PredefExpr</code> is an optional parameter and one of the following predefined expressions: <code>SHORT</code> <code>EXTent</code> . Default is <code>SHORT</code> .
Command	There is only a query form of this command available.
Query	Reads and returns a comma-separated list of file names. Each file contains antenna factor compensation stored on the 9101.
Example	<code>:MMEMORY:LOAD:FILElist:AFACtor?</code> String returned in this example: "AFAC2", "AFAC5"

:MMEMORY[:LOAD] :FILElist:CFACtor?

Syntax	<code>:MMEMORY[:LOAD] :FILElist:CFACtor? <PredefExpr></code>
Parameters	<code>PredefExpr</code> is an optional parameter and one of the following predefined expressions: <code>SHORT</code> <code>EXTent</code> . Default is <code>SHORT</code> .
Command	There is only a query form of this command available.
Query	Reads and returns a comma-separated list of file names. Each file contains cable factor compensation stored on the 9101.
Example	<code>:MMEMORY:LOAD:FILElist:CFACtor?</code> String returned in this example: "CFAC7", "CFAC8"

:MMEMORY:LOAD:STATE

Syntax	<code>:MMEMORY:LOAD:STATE <string1></code>
Parameters	<code>string1</code> is a string (text) parameter. The maximum length of <code>string1</code> is 11 characters.
Command	Loads 9101 parameter settings from file <code>string1</code> located in the SETTINGS directory on the flash disk.
Query	Reads and returns the file name last loaded with this command.
Example	<code>:MMEMORY:LOAD:STATE "sett3"</code>

:MMEMORY:LOAD:TRACE

Syntax	<code>:MMEMORY:LOAD:TRACE <string1>,<PredefExpr></code>
Parameters	<code>string1</code> is a string (text) parameter. The maximum length of <code>string1</code> is 11 characters. <code>PredefExpr</code> is an optional parameter and one of the following predefined expressions: A B. Default is A.
Command	Loads 9101 traces from file <code>string1</code> located in the TRACE directory on the flash disk to trace A or B.
Query	Reads and returns the file name last loaded with this command.
Example	<code>:MMEMORY:LOAD:TRACE "TESTTRACE2"</code>

:MMEMORY:LOAD:LIMit

Syntax	<code>:MMEMORY:LOAD:LIMit <string1></code>
Parameters	<code>string1</code> is a string (text) parameter. The maximum length of <code>string1</code> is 11 characters.
Command	Loads 9101 limit settings from file <code>string1</code> located in the LIMIT directory on the flash disk.
Query	Reads and returns the file name last loaded with this command.
Example	<code>:MMEMORY:LOAD:LIMit "sett3"</code>

:MMEMORY:LOAD:CHANnel

Syntax	<code>:MMEMORY:LOAD:CHANnel <string1></code>
Parameters	<code>string1</code> is a string (text) parameter. The maximum length of <code>string1</code> is 11 characters.
Command	Load saved channel data from file <string1> in the CHANNEL directory on the flash disk.
Query	Reads and returns the file name last loaded with this command.
Example	<code>:MMEMORY:LOAD:CHANnel "GSM900"</code>

:MMEMORY:LOAD:EDEVICE

Syntax	<code>:MMEMORY:LOAD:EDEVICE <string1></code>
Parameters	string1 is a string (text) parameter. The maximum length of string1 is 11 characters.
Command	Loads saved channel data from file <string1> in the external device directory on the flash disk.
Query	Reads and returns the file name last loaded with this command.
Example	<code>:MMEMORY:LOAD:EDEVICE "EXT_DEV2"</code>

:MMEMORY:LOAD:CTYPE

Syntax	<code>:MMEMORY:LOAD:CTYPE <string1></code>
Parameters	string1 is a string (text) parameter. The maximum length of string1 is 11 characters.
Command	Loads saved cable type from file in the cable type directory on the flash disk.
Query	Reads and returns the file name last loaded with this command.
Example	<code>:MMEMORY:LOAD:CTYPE "RG58"</code>

:MMEMORY:LOAD:AFACTOR

Syntax	<code>:MMEMORY:LOAD:AFACTOR <string1></code>
Parameters	string1 is a string (text) parameter. The maximum length of string1 is 11 characters.
Command	Load saved cable factor data from file in the cable factor directory on the flash disk.
Query	Reads and returns the file name last loaded with this command.
Example	<code>:MMEMORY:LOAD:CFACTOR "CFAC7"</code>

:MMEMORY:LOAD:CFACTOR

Syntax	<code>:MMEMORY:LOAD:CFACTOR <string1></code>
Parameters	string1 is a string (text) parameter. The maximum length of string1 is 11 characters.
Command	Load saved antenna factor data from file in the antenna factor directory on the flash disk.
Query	Reads and returns the file name last loaded with this command.
Example	<code>:MMEMORY:LOAD:AFACTOR "AFAC2"</code>

:MMEMORY:DELETE:STATE

Syntax	<code>:MMEMORY:DELETE:STATE <string1></code>
Parameters	string1 is a string (text) parameter. The maximum length of string1 is 11 characters.

Command	Deletes file <string1> in the SETTINGS directory on the flash disk. Files in this directory usually contain parameter settings of the device.
Query	Reads and returns the name of the file last deleted with this command.
Example	<code>:MMEMory:DELetE:STATE "sett3"</code>

:MMEMory:DELetE:STATE:ALL

Syntax	<code>:MMEMory:DELetE:STATE:ALL</code>
Parameters	There are no parameters.
Command	Deletes all the files in the SETTINGS directory on the flash disk. These files usually contain parameter settings of the 9101.
Query	There is no query form of this command available.
Example	<code>:MMEMory:DELetE:STATE:ALL</code>

:MMEMory:DELetE:TRACe

Syntax	<code>:MMEMory:DELetE:TRACe <string1></code>
Parameters	string1 is a string (text) parameter. The maximum length of string1 is 11 characters.
Command	Deletes file string1 (saved trace data and parameter settings) from the TRACE directory on the flash disk.
Query	Reads and returns the name of the file last deleted with this command.
Example	<code>:MMEMory:DELetE:TRACe "GSM900"</code>

:MMEMory:DELetE:TRACe:ALL

Syntax	<code>:MMEMory:DELetE:TRACe:ALL</code>
Parameters	There are no parameters.
Command	Deletes all the files in the TRACE directory on the flash disk.
Query	There is no query form of this command available.
Example	<code>:MMEMory:DELetE:TRACe:ALL</code>

:MMEMory:DELetE:LIMit

Syntax	<code>:MMEMory:DELetE:LIMit <string1></code>
Parameters	string1 is a string (text) parameter. The maximum length of string1 is 11 characters.
Command	Deletes file string1 in the LIMIT directory. Files in this directory contain limit settings of the device.
Query	Reads and returns the name of the file last deleted with this command.
Example	<code>:MMEMory:DELetE:LIMit "lim3"</code>

:MMEMORY:DELETE:LIMit:ALL

Syntax	:MMEMORY:DELETE:LIMit:ALL
Parameters	There are no parameters.
Command	Deletes all the files in the LIMIT directory on the flash disk. These files contain spectrum limit settings of the 9101.
Query	There is no query form of this command available.
Example	:MMEMORY:DELETE:LIMit:ALL

:MMEMORY:DELETE:CHANnel

Syntax	:MMEMORY:DELETE:CHANnel <string1>
Parameters	string1 is a string (text) parameter. The maximum length of string1 is 11 characters.
Command	Deletes file string1 from the CHANNEL directory. Files in this directory contain channel settings of the device.
Query	Reads and returns the name of the file last deleted with this command.
Example	:MMEMORY:DELETE:CHAN "P-GSM"

:MMEMORY:DELETE:CHANnel:ALL

Syntax	:MMEMORY:DELETE:CHANnel:ALL
Parameters	There are no parameters.
Command	Deletes all the files in the CHANNEL directory on the flash disk.
Query	There is no query form of this command available.
Example	:MMEMORY:DELETE:CHANnel:ALL

:MMEMORY:DELETE:EDEvice

Syntax	:MMEMORY:DELETE:EDEvice <string1>
Parameters	string1 is a string (text) parameter. The maximum length of string1 is 11 characters.
Command	Deletes file string1 in the external device directory on the flash disk. Files in this directory contain external device compensation settings on the 9101.
Query	Reads and returns the name of the file last deleted with this command.
Example	:MMEMORY:DELETE:EDEvice "EXT_DEV3"

:MMEMORY:DELETE:EDEVICE:ALL

Syntax	<code>:MMEMORY:DELETE:EDEVICE:ALL</code>
Parameters	There are no parameters.
Command	Deletes all the files in the external device directory on the flash disk.
Query	There is no query form of this command available.
Example	<code>:MMEMORY:DELETE:EDEVICE:ALL</code>

:MMEMORY:DELETE:CTYPE

Syntax	<code>:MMEMORY:DELETE:CTYPE <string1></code>
Parameters	<code>string1</code> is a string (text) parameter. The maximum length of <code>string1</code> is 11 characters.
Command	Deletes file <code>string1</code> in the cable type directory on the flash disk. Files in this directory contain cable type settings on the 9101.
Query	Reads and returns the name of the file deleted last with this command.
Example	<code>:MMEMORY:DELETE:CTYPE "cable3"</code>

:MMEMORY:DELETE:CTYPE:ALL

Syntax	<code>:MMEMORY:DELETE:CTYPE:ALL</code>
Parameters	There are no parameters.
Command	Deletes all the files in the cable type directory on the flash disk.
Query	There is no query form of this command available.
Example	<code>:MMEMORY:DELETE:CTYPE:ALL</code>

:MMEMORY:DELETE:AFACTOR

Syntax	<code>:MMEMORY:DELETE:AFACTOR <string1></code>
Parameters	<code>string1</code> is a string (text) parameter. The maximum length of <code>string1</code> is 11 characters.
Command	Deletes file <code>string1</code> in the antenna factor directory on the flash disk. Files in this directory contain antenna factor compensation settings on the 9101.
Query	Reads and returns the name of the file deleted last with this command.
Example	<code>:MMEMORY:DELETE:AFACTOR "AFAC2"</code>

:MMEMORY:DELETE:AFACtor:ALL

Syntax	:MMEMORY:DELETE:AFACtor:ALL
Parameters	There are no parameters.
Command	Deletes all the files in the antenna factor directory on the flash disk.
Query	There is no query form of this command available.
Example	:MMEMORY:DELETE:AFACtor:ALL

:MMEMORY:DELETE:CFACTOR

Syntax	:MMEMORY:DELETE:CFACTOR <string1>
Parameters	string1 is a string (text) parameter. The maximum length of string1 is 11 characters.
Command	Deletes file string1 in the cable factor directory on the flash disk. Files in this directory contain cable factor compensation settings on the 9101.
Query	Reads and returns the name of the file deleted last with this command.
Example	:MMEMORY:DELETE:CFACTOR "CFAC7"

:MMEMORY:DELETE:CFACTOR:ALL

Syntax	:MMEMORY:DELETE:CFACTOR:ALL
Parameters	There are no parameters.
Command	Deletes all the files in the cable factor directory on the flash disk.
Query	There is no query form of this command available.
Example	:MMEMORY:DELETE:AFACtor:ALL

Instrument commands

:INSTRUMENT:SELECT

Syntax	:INSTRUMENT:SELECT <PredefExpr>
Parameters	PredefExpr is one of the following expressions: SANalyzer CPOWer RFLection CLOSS EMF. Default is SANalyzer.
Command	Selects the measurement mode. Available modes are spectrum analysis, and channel power.
Query	Reads and returns the current setting.
Example	:INSTRUMENT:SELECT CPOWer :INSTRUMENT:SELECT? Returns the following string: "CPOWer"

fDisplay commands

The display command subsystem affects the screen of the instrument.

:DISPlay:TRACe:Y[:SCALe] [:LOGarithmic]

Syntax	<code>:DISPlay:TRACe:Y[:SCALe] [:LOGarithmic] <int1></code>
Parameters	int1 is an integer. The minimum value for <int1> is 1, the maximum is 20. Valid values are 1, 2, 5, 10, 20. The default value is 10.
Command	Holds the upper limit of the power scale but changes the resolution (and the lower limit) of the scale when int1 defines how many dB per scale unit are shown on the display.
Query	Returns the current setting.
Example	<code>:DISPlay:TRACe:Y[:SCALe] [:LOGarithmic] 20</code> <code>:DISPlay:TRACe:Y[:SCALe] [:LOGarithmic]?</code> The value returned in this example is: "20".

:DISPlay:TRACe:Y[:SCALe]:LINEar:VOLT

Syntax	<code>:DISPlay:TRACe:Y[:SCALe]:LINEar:VOLT <real1></code>
Parameters	real1 is a floating point real number. The minimum value for real1 is 0.00001. The maximum value for real1 is 1.0. The default value for real1 is 0.001.
Command	This command is only in effect when 9101 is set to voltage unit. It holds the upper limit of the scale but changes the resolution (and the lower limit) of the voltage scale. real1 defines how many volts per scale unit are shown on the display. The resolution depends on which unit is set with SENSE:REFLevel:UNIT. If it set to V the command and query is in Volts. If it set to MV the command and query is in Milli Volts. If it set to UV the command and query is in Micro Volts.
Query	Returns the current setting.
Example	<code>:DISPlay:TRACe:Y[:SCALe]:LINEar:VOLT 0.0005</code> <code>:DISPlay:TRACe:Y[:SCALe]:LINEar:VOLT?</code> The value returned in this example is: "0.0005".

:DISPlay:TRACe:Y[:SCALe]:LINEar:WATT

Syntax	<code>:DISPlay:TRACe:Y[:SCALe]:LINEar:WATT <real1></code>
Parameters	real1 is a floating point real number. The minimum value for real1 is 0.00000000001. The maximum value for real1 is 0.1. The default value for real1 is 0.000001.
Command	This command is only in effect when 9101 is set to Watt unit. It holds the upper limit of the scale but changes the resolution (and the lower limit) of the Watt scale. real1 defines how many Watts per scale unit are shown on the display. The resolution depends on which unit is set with SENSE:REFLevel:UNIT. If it set to MW the command and query is in Milli Watts. If it set to UW the command and query is in Micro Watts.
Query	Returns the current setting.

Example	<pre>:DISPlay:TRACe:Y[:SCALe]:LINear:WATT 0.0002 :DISPlay:TRACe:Y: [SCALe]:LINear:WATT?</pre> <p>The value returned in this example is: "0.0002".</p>
----------------	---

:DISPlay:TRACe:Y[:SCALe]:RFLection:VSWR

Syntax	<code>:DISPlay:TRACe:Y[:SCALe]:RFLection:VSWR <real1></code>
Parameters	<p>real1 is a floating point real number. The minimum value for real1 is 1.0. The maximum value for real1 is 1000.0. The default value for real1 is 100.0.</p>
Command	<p>This command is only in effect when 9101 is set to reflection mode and the unit is set to VSWR. It holds the upper limit of the VSWR scale but changes the resolution (and the lower limit) of the scale. real1 defines how many VSWR units per scale unit are shown on the display.</p>
Query	Returns the current setting.
Example	<pre>:DISPlay:TRACe:Y[:SCALe]:RFLection:VSWR 0.5 :DISPlay:TRACe:Y: [SCALe]:RFLection:VSWR?</pre> <p>The value returned in this example is: "0.5".</p>

:DISPlay:TRACe:Y[:SCALe]:RFLection:RFACtor

Syntax	<code>:DISPlay:TRACe:Y[:SCALe]:RFLection:RFACtor <real1></code>
Parameters	<p>real1 is a floating point real number. The minimum value for real1 is 1 mRho. The maximum value for real1 is 2000 mRho. The default value for real1 is 200 mRho.</p>
Command	<p>This command is only in effect when 9101 is set to reflection mode and unit is set to reflection factor. It holds the upper limit of the reflection factor scale but changes the resolution (and the lower limit) of the scale. real1 defines how many mRho per scale unit are shown on the display.</p>
Query	Returns the current setting.
Example	<pre>:DISPlay:TRACe:Y[:SCALe]:RFLection:RFACtor 100 :DISPlay:TRACe:Y: [SCALe]:RFLection:RFACtor?</pre> <p>The value returned in this example is: "100".</p>

:DISPlay:TRACe:Y[:SCALe]:RFLection:RPOWer

Syntax	<code>:DISPlay:TRACe:Y[:SCALe]:RFLection:RPOWer <real1></code>
Parameters	<p>real1 is a floating point real number. The minimum value for real1 is 1.0 %. The maximum value for real1 is 200.0 %. The default value for real1 is 20.0 %.</p>
Command	<p>This command is only in effect when 9101 is set to reflection mode and unit is set to reflection power. It holds the upper limit of the reflection power scale but changes the resolution (and the lower limit) of the scale. real1 defines how many % per scale unit are shown on the display.</p>
Query	Returns the current setting.
Example	<pre>:DISPlay:TRACe:Y[:SCALe]:RFLection:RPOWer 10 :DISPlay:TRACe:Y: [SCALe]:RFLection:RPOWer?</pre> <p>The value returned in this example is: "10".</p>

:DISPlay:TRACe:Y[:SCALE] :DTF:RFACTOr

Syntax	<code>:DISPlay:TRACe:Y[:SCALE] :DTF:RFACTOr <real1></code>
Parameters	<code>real1</code> is a floating point real number. The minimum value for <code>real1</code> is 1 mRho. The maximum value for <code>real1</code> is 1000 mRho. The default value for <code>real1</code> is 100 mRho.
Command	This command is only in effect when 9101 is set to Reflection Mode and unit is set to Reflection Factor. It holds the upper limit of the Reflection Factor scale but changes the resolution (and the lower limit) of the scale. <code>real1</code> defines how many mRho per scale unit are shown on the display.
Query	Returns the current setting.
Example	<code>:DISPlay:TRACe:Y[:SCALE] :DTF:RFACTOr 100</code> <code>:DISPlay:TRACe:Y[:SCALE] :DTF:RFACTOr?</code> The value returned in this example is: "100".

:DISPlay:BACKlight[:BATTery]

Syntax	<code>:DISPlay:BACKlight[:BATTery] <int1></code>
Parameters	<code>int1</code> is an integer. The minimum value for <code><int1></code> is 0, the maximum is 100. The default value is 50.
Command	Sets the brightness of the screen in battery mode. A setting of 100 leads to the maximum brightness.
Query	Returns the current setting.
Example	<code>:DISPlay:BACKlight 30</code> <code>:DISPlay:BACKlight?</code> The value returned in this example is: "30".

:DISPlay:BACKlight:EXTern

Syntax	<code>:DISPlay:BACKlight:EXTern <int1></code>
Parameters	<code>int1</code> is an integer. The minimum value for <code><int1></code> is 0, the maximum is 100. The default value is 100.
Command	Sets the brightness of the screen when external power supply is connected. A setting of 100 leads to the maximum brightness.
Query	Returns the current setting.
Example	<code>:DISPlay:BACKlight:EXTern 50</code> <code>:DISPlay:BACKlight:EXTern?</code> The value returned in this example is: "50".

:DISPlay:BEEP

Syntax	<code>:DISPlay:BEEP <PredefExpr></code>
Parameters	<code>PredefExpr</code> is one of the following predefined expressions: ON OFF. Default is ON.
Command	Sets the beep tone on and off.
Query	Reads and returns the current setting.

Example	<code>:DISPlay:BEEP ON</code> <code>:DISPlay:BEEP?</code> Returns the following string: "ON"
----------------	--

:DISPlay:COLOr:TRACe:[A|B]

Syntax	<code>:DISPlay:COLOr:TRACe:[A B] <int1></code>
Parameters	int1 is an integer. The minimum value for <int1> is 1, the maximum is 8. The default value is 1 for trace A and 3 for trace B.
Command	Sets the color from the color palette for trace A or B.
Query	Reads and returns the current setting.
Example	<code>:DISPlay:COLOr:TRACe:A 5</code> <code>:DISPlay:COLOr:TRACe:A?</code> The value returned in this example is: "5".

:DISPlay:COLOr:TRACe:OFFSet

Syntax	<code>:DISPlay:COLOr:TRACe:OFFSet <int1></code>
Parameters	int1 is an integer. The minimum value for <int1> is 1, the maximum is 8. The default value is 7.
Command	Sets the color from the color palette for the trace offset for the subtracted trace (A-B->A trace).
Query	Reads and returns the current setting.
Example	<code>:DISPlay:COLOr:TRACe:OFFSet 5</code> <code>:DISPlay:COLOr:TRACe:OFFSet?</code> The value returned in this example is: "5".

:DISPlay:COLOr:GRATICule

Syntax	<code>:DISPlay:COLOr:GRATICule <int1></code>
Parameters	int1 is an integer. The minimum value for <int1> is 1, the maximum is 8. The default value is 2.
Command	Sets the color from the color palette for the graticule.
Query	Reads and returns the current setting.
Example	<code>:DISPlay:COLOr:GRATICule 5</code> <code>:DISPlay:COLOr:GRATICule?</code> The value returned in this example is: "5".

:DISPlay:COLOr:LIMits

Syntax	<code>:DISPlay:COLOr:LIMits <int1></code>
Parameters	int1 is an integer. The minimum value for <int1> is 1, the maximum is 8. The default value is 7.
Command	Sets the color from the color palette for the limit lines.
Query	Reads and returns the current setting.

Example	<code>:DISPlay:COLOr:LIM 5</code> <code>:DISP:COL:LIMits?</code> The value returned in this example is: "5".
----------------	--

Calculate commands

The markers of the 9101 can be set using the calculate commands.

:CALCulate:MARKer:AOFF

Syntax	<code>:CALCulate:MARKer:AOFF</code>
Parameters	There are no parameters.
Command	All markers are switched off.
Query	There is no query form of this command available.
Example	<code>:CALC:MARK:A:STAT NORM</code> <code>:CALC:MARK:B:STAT DELT</code> <code>:CALC:MARK:C:STAT DELT</code> <code>:CALC:MARK:AOFF</code>

:CALCulate:MARKer:{A|B|C|D|E|F}[:STATE]

Syntax	<code>:CALCulate:MARKer:{A B C D E F}[:STATE]</code> <code><PredefExpr></code>
Parameters	PredefExpr is one of the following predefined expressions: OFF NORMAl DELTa. Default is OFF.
Command	Selects an active marker and sets it to one of three different modes: OFF NORMAl COUNTER or OFF NORMAl DELTa. OFF is used to switch off the selected marker. NORMAl switches the selected marker on. DELTa changes the marker B, C or D to a delta marker; the REF marker is always A. Marker A cannot be set to DELTa. Only Marker A can be set to COUNTER which switches on the frequency counter.
Query	The query form of this command will return the current setting. The string delivered back will contain the short-form version of one of the predefined expressions explained above.
Example	<code>:CALC:MARK:A:STAT NORM</code> <code>:CALC:MARK:A:STAT?</code> Value returned in this example: "NORM".

:CALCulate:MARKer:{A|B|C|D|E|F}:DTF[:STATE]

Syntax	<code>:CALCulate:MARKer:{A B C D E F}:DTF[:STATE]</code> <code><PredefExpr></code>
Parameters	PredefExpr is one of the following predefined expressions: OFF NORMAl DELTa. Default is OFF.

Command	Selects an active marker and sets it to one of three different modes: OFF NORMAl COUNTER or OFF NORMAl DELTa. OFF is used to switch off the selected marker. NORMAl switches the selected marker on. DELTa changes the marker B, C or D to a delta marker; the REF marker is always A. Marker A cannot be set to DELTa. Only Marker A can be set to COUNTER which switches on the frequency counter.
Query	The query form of this command will return the current setting. The string delivered back will contain the short-form version of one of the predefined expressions explained above.
Example	<pre>:CALC:MARK:A:DTF NORM :CALC:MARK:A:DTF?</pre> Value returned in this example: "NORM".

:CALCulate:MARKer:{A|B|C|D|E|F}:Y?

Syntax	<code>:CALCulate:MARKer:{A B C D E F}:Y?</code>
Parameters	There are no parameters.
Command	There is solely a query form of this command available.
Query	The query form of this command returns the level value at the current marker position set by <code>CALCulate:MARKer:{A B C D E F}:X</code> . The string delivered will contain one floating point real number with the physical dimension that has been selected for the reference level (<code>:SENSe:REFLevel:UNIT</code>).
Example	<pre>:CALCulate:MARKer:B:X 2200000000 :CALCulate:MARKer:B:Y?</pre> The value returned is: "-22.4".

:CALCulate:MARKer:{A|B|C|D|E|F}:X[:FREQuency]

Syntax	<code>:CALCulate:MARKer:{A B C D E F}:X[:FREQuency] <real1></code>
Parameters	real1 is a floating point real number. The minimum value for real1 is 0, the maximum value 4000000000. The minimum resolution possible for real1 is 1. The default value for real1 is 1800000000.
Command	This command sets the marker frequency for one of the six markers of the Willtek 9101 when in spectrum analysis mode. The physical dimension of real1 is Hertz.
Query	The query form of this command will return the current marker frequency setting of the respective marker of the Willtek 9101 (A, B, C, D, E or F). The string delivered back will contain one real number.
Example	<pre>:CALCulate:MARKer:C:X 1500000000 :CALCulate:MARKer:C:X?</pre> The value returned in this example is: "1500000000".

:CALCulate:MARKer:{A|B|C|D|E|F}:X:TIME

Syntax	<code>:CALCulate:MARKer:{A B C D E F}:X:TIME <real1></code>
Parameters	real1 is a floating point real number. The minimum value for real1 is 0.001, the maximum value 250.0. The minimum resolution possible for real1 is 1. The default value for real1 is 0.0432.

Command	This command sets the marker time for zero-span measurements for one of the six markers of the Willtek 9101. The physical dimension of <code>real1</code> is seconds.
Query	The query form of this command will return the current marker time setting of the respective marker of the Willtek 9101 (A, B, C, D, E or F). The string delivered back will contain one real number.
Example	<code>:CALCulate:MARKer:C:X:TIME 0.5</code> <code>:CALCulate:MARKer:C:X:TIME?</code> The value returned in this example is: "0.5".

:CALCulate:MARKer:{A|B|C|D|E|F}:X:DISTance

Syntax	<code>:CALCulate:MARKer:{A B C D E F}:X:DISTance <real1></code>
Parameters	<code>real1</code> is a floating point real number. The minimum value for <code>real1</code> is 0.0, the maximum value 2000.0. The minimum resolution possible for <code>real1</code> is 1. The default value for <code>real1</code> is 0.0432.
Command	This command sets the marker time for distance to fault measurements for one of the six markers of the Willtek 9100. The physical dimension of <code>real1</code> is meter or feet, respectively.
Query	The query form of this command will return the current DTF marker length setting of the respective marker of the Willtek 9101 (A, B, C, D, E or F). The string delivered back will contain one real number.
Example	<code>:CALCulate:MARKer:C:X:DISTance 10.5</code> <code>:CALCulate:MARKer:C:X:DISTance?</code> The value returned in this example is: "10.5".

:CALCulate:{A|B|C|D|E|F}:MARKer:FSTep

Syntax	<code>:CALCulate:MARKer:{A B C D E F}:FSTep</code>
Parameters	There are no parameters.
Command	Sets Marker A, B, C, D, E or F to current frequency step (FSTep).
Query	There is no query form of this command available.
Example	<code>:CALCulate:MARKer:A:FSTep</code>

:CALCulate:MARKer:{A|B|C|D|E|F}:TSELect

Syntax	<code>:CALCulate:MARKer:{A B C D E F}:TSELect <PredefExpr></code>
Parameters	<code>PredefExpr</code> is one of the following predefined expressions: A B. Default is A.
Command	Selects an active marker and sets it either to trace A or trace B. Note: Set to trace B is only possible when trace B is active.
Query	The query form of this command will return the current setting. The string delivered back will contain the short-form version of one of the predefined expressions explained above.
Example	<code>:CALC:MARK:A:TSELect B</code> <code>:CALC:MARK:A:TSELect?</code> Value returned in this example: "B".

:CALCulate:MARKer:MAXPeak

Syntax	<code>:CALCulate:MARKer:MAXPeak</code>
Parameters	There are no parameters.
Command	Sets the currently selected marker to the maximum measured level. A marker is "selected" by way of the <code>:CALCulate:MARKer:{A B C D E F}[:STATE]</code> command.
Query	There is no query form of this command available.
Example	<code>:CALCulate:MARKer:MAXPeak.</code>

:CALCulate:MARKer:NPEak

Syntax	<code>:CALCulate:MARKer:NPEak</code>
Parameters	There are no parameters.
Command	Sets the currently selected marker to the next highest level value.
Query	There is no query form of this command available.
Example	<code>:CALCulate:MARKer:NPEak.</code>

:CALCulate:MARKer:MCENTER

Syntax	<code>:CALCulate:MARKer:MCENTER</code>
Parameters	There are no parameters.
Command	The center frequency is changed to the current marker frequency.
Query	There is no query form of this command available.
Example	<code>:CALCulate:MARKer:MCENTER.</code>

:CALCulate:MARKer:MREFlevel

Syntax	<code>:CALCulate:MARKer:MREFlevel</code>
Parameters	There are no parameters.
Command	The REFerence level is changed to the level at the marker position.
Query	There is no query form of this command available.
Example	<code>:CALCulate:MARKer:MREFlevel.</code>

:CALCulate:MARKer:FCOUNT?

Syntax	<code>:CALCulate:MARKer:FCOUNT?</code>
Parameters	There are no parameters.
Command	There is solely a query form of this command available.
Query	Returns a string with the floating point value for the current result of the frequency counter, in Hz. Marker M1 (CALC:MARK:A COUNTER) has to be set before to get a valid result.
Example	<code>:CALCulate:MARKer:FCOUNT?</code> The value returned in this example is: "2694365000.0".

:CALCulate:MARKer:FCOUNT:RESolution

Syntax	<code>:CALCulate:MARKer:FCOUNT:RESolution <real1></code>
Parameters	<code>real1</code> is an integer. The minimum value for <code><real1></code> is 1, the maximum is 1000. Valid values are 1, 10, 100, 1000. The default value is 1000.
Command	Sets the counter resolution of the frequency counter in Hz.
Query	Reads and returns the current setting.
Example	<code>:CALC:MARK:FCO:RES 10</code> <code>:CALC:MARK:FCO:RES?</code> The value returned in this example is: "10".

:CALCulate:LIMit[:STATE]

Syntax	<code>:CALCulate::LIMit[:STATE] <PredefExpr></code>
Parameters	<code>PredefExpr</code> is one of the following predefined expressions: OFF UPPer LOWER UPPLow. Default is OFF.
Command	Selects the limit lines to one of four different modes: OFF UPPer LOWER UPPLow. OFF is used to switch off the limit lines. UPPer switches only the upper limit line on. LOWER switches only the lower limit line on. UPPLow switches both upper and lower limit lines on.
Query	The query form of this command will return the current setting. The string delivered back will contain the short-form version of one of the predefined expressions explained above.
Example	<code>CALC:LIM:STAT UPPL</code> <code>:CALC:LIM?</code> Value returned in this example: "UPPL".

:CALCulate:LIMit:FCOUNT

Syntax	<code>:CALCulate:LIMit:FCOUNT <PredefExpr></code>
Parameters	<code>PredefExpr</code> is one of the following predefined expressions: ON OFF. Default is OFF.
Command	Enables (and resets) or disables the failure counter. When enabled, requires that limit checking is also active (see CALC:LIM:STAT).

Query Reads and returns the current setting.

Example
:CALCulate:LIMit:FCount ON
:CALCulate:LIMit:FCount?
Returns the following string: "ON"

:CALCulate:LIMit:COUNT?

Syntax :CALCulate:LIMit:COUNT?

Parameters There are no parameters.

Command There is solely a query form of this command available.

Query Gets the current count of fails in the limit check.

Example
:CALCulate:LIMit:FCount?
The value returned in this example is: "5".

:CALCulate:LIMit:FBEEP

Syntax :CALCulate:LIMit:FBEEP <PredefExpr>

Parameters PredefExpr is one of the following predefined expressions: ON | OFF.
Default is OFF.

Command Enables or disables a sound that can be output each time a measurement fails the limits.

Query Reads and returns the current setting.

Example
:CALC:LIMit:FBEEP ON
:CALCulate:LIMit:FBEEP?
Returns the following string: "ON".

:CALCulate:LIMit:FHOLD

Syntax :CALCulate:LIMit:FHOLD <PredefExpr>

Parameters PredefExpr is one of the following predefined expressions: ON | OFF.
Default is OFF.

Command Enables or disables hold, if measurement fails the limits.

Query Reads and returns the current setting.

Example
:CALCulate:LIMit:FHOLD ON
:CALCulate:LIMit:FHOLD?
Returns the following string: "ON".

:CALCulate:LIMit:SIMPLE

Syntax :CALCulate:LIMit:SIMPLE <PredefExpr>

Parameters PredefExpr is one of the following predefined expressions: ON | OFF.
Default is OFF.

Command Enables or disables the simple limit lines.

Query Reads and returns the current setting.

Example	<code>:CALCulate:LIMit:SIMPle ON</code> <code>:CALCulate:LIMit:SIMPle?</code> Returns the following string: "ON".
----------------	---

:CALCulate:LIMit:SIMPle:UPPer

Syntax	<code>:CALCulate:LIMit:SIMPle:UPPer <real1></code>
Parameters	<code>real1</code> is a floating point real number. The minimum value for <code>real1</code> is 0 . 0, the maximum value 8 . 0. The minimum resolution possible for <code>real1</code> is 0 . 1. The default value for <code>real1</code> is 7 . 0.
Command	Sets the simple upper limit line. The unit is one grid. 0 . 0 means the lower border of the visible display and 8 . 0 means the upper border.
Query	Reads and returns the current setting.
Example	<code>:CALCulate:LIMit:SIMPle:UPPer 6</code> <code>:CALCulate:LIMit:SIMPle:UPPer?</code> The value returned in this example is: "6 . 0".

:CALCulate:LIMit:SIMPle:LOWER

Syntax	<code>:CALCulate:LIMit:SIMPle:LOWER <real1></code>
Parameters	<code>real1</code> is a floating point real number. The minimum value for <code>real1</code> is 0 . 0, the maximum value 8 . 0. The minimum resolution possible for <code>real1</code> is 0 . 1. The default value for <code>real1</code> is 1 . 0.
Command	Sets the simple lower limit line. The unit is one grid. 0 . 0 means the lower border of the visible display and 8 . 0 means the upper border.
Query	Reads and returns the current setting.
Example	<code>:CALCulate:LIMit:SIMPle:LOWER 2</code> <code>:CALCulate:LIMit:SIMPle:LOWER?</code> The value returned in this example is: "2 . 0".

:CALCulate:MEASure:ACPR

Syntax	<code>:CALCulate:MEASure:ACPR?</code>
Parameters	There are no parameters.
Command	There is solely a query form of this command available.
Query	Returns a string containing three floating point values; these represent the relative power in the lower adjacent channel (in dB), the in-channel power (in dBm) and the relative power in the upper adjacent channel (in dB).
Example	<code>:CALCulate:MEASure:ACPR?</code> The value returned in this example is: "-14 . 9 ,-31 . 5 ,-14 . 1".

:CALCulate:MEASure:OBW

Syntax	<code>:CALCulate:MEASure:OBW?</code>
Parameters	There are no parameters.
Command	There is solely a query form of this command available.

Query	Returns a string with the floating point value for the occupied bandwidth, in Hz.
Example	<code>:CALCulate:MEASure:OBW?</code> The value returned in this example is: " 2694000.0 ".

:CALCulate:MEASure:CPOWer

Syntax	<code>:CALCulate:MEASure:CPOWer?</code>
Parameters	There are no parameters.
Command	There is solely a query form of this command available.
Query	Returns the measured in-channel power, in dBm.
Example	<code>:CALCulate:MEASure:CPOW?</code> Returns the following string: "-32.2".

NOTE

The `:CALCulate:MEASure:CPOWer?` command only returns a valid measurement result after a complete sweep has been made. Should the channel power be determined before the sweep is complete, the value -9999 will be returned. This value will also be returned, if the channel system settings defined cause an invalid measurement result. The value -9999 always indicates an invalid measurement value.

Format commands

These commands are used for formatting the SCPI output of the 9101 Handheld Spectrum Analyzer.

:FORMAT:ADELimiter

Syntax	<code>:FORMAT:ADELimiter <PredefExp></code>
Parameters	PredefExp is one of the following predefined expressions: COMMa COLOn SEMIColon. Default is COMMa.
Command	Selects the delimiter to be used to separate parameters in SCPI commands, and also to separate the individual measurement result values in a result return string. COMMa stands for commas (default), COLOn sets the delimiter to be a colon (:), while SEMIColon will use and expect a semicolon (;) to be used.
Query	Reads and returns the current setting.
Example	<code>:FORM:ADEL</code> Defines the comma to be used as delimiter for both commands and measurement results.

:FORMAT:RESolution

Syntax	<code>:FORMAT:RESolution <int1></code>
---------------	--

Parameters	int1 is an integer. The minimum value for <int1> is 0, the maximum is 20. The default value is 6.
Command	Defines the number of digits after the decimal point to be used for floating point real figures.
Query	Reads and returns the current setting.
Example	<code>:FORM:RES 0</code> Defines that there will be no digits after the decimal point.

Service commands

These commands are used for information regarding the status of the 9101.

:SERVice:BOOTversion?

Syntax	<code>:SERVice:BOOTversion?</code>
Parameters	There are no parameters.
Command	There is only a query form of this command available.
Query	Reads and returns the version of the boot software of your Willtek 9101. The command will return a string.
Example	<code>:SERVice:BOOTversion?</code> String returned in this example: "2.00".

:SERVice:BOOTversion:DATE?

Syntax	<code>:SERVice:BOOTversion:DATE?</code>
Parameters	There are no parameters.
Command	There is only a query form of this command available.
Query	Reads and returns the date of the Boot Software of your Willtek 9101. The command will return a string.
Example	<code>:SERVice:BOOTversion:DATE?</code> String returned in this example: "2004/10/22".

:SERVice:BATTery

Syntax	<code>:SERVice:BATTery?</code>
Parameters	There are no parameters.
Command	There is only a query form of this command available.
Query	Reads and returns the the current loading state of the battery in %. The command will return an integer.
Example	<code>:SERVice:BATTery?</code> String returned in this example: "40".

:SERVICE:BATTery:SERialnumber?

Syntax	:SERVICE:BATTery:SERialnumber?
Parameters	There are no parameters.
Command	There is only a query form of this command available.
Query	Reads and returns the serial number of the battery of your Willtek 9101. The command will return a string.
Example	:SERVICE:BATTery:SERialnumber? String returned in this example: "00300402".

:SERVICE:POWerline?

Syntax	:SERVICE:POWerline?
Parameters	There are no parameters.
Command	There is only a query form of this command available.
Query	Returns ON, if the Willtek 9101 is connected to the 12 V power line, otherwise returns OFF.
Example	:SERV:POW? String returned in this example: "OFF".

:SERVICE:CHECK:LAST

Syntax	:SERVICE:CHECK:LAST <int1>,<int2>,<int3>,<string>
Parameters	intx are three integers. The minimum value for int1 is 1998, the maximum is 2100. The default value is 1998. The minimum value for int2 is 1, the maximum is 12. The default value is 1. The minimum value for int3 is 1, the maximum is 31. The default value is 1. string is a string (text) parameter. The maximum length of string1 is 16 characters.
Command	Sets date and name of the last check of this device.
Query	Reads and returns current settings. The command will return 3 integers and a string.
Example	:SERVICE:CHECK:LAST? String returned in this example: 2004,04,01, "John Williams".

:SERVICE:CHECK:NEXT

Syntax	:SERVICE:CHECK:NEXT?
Parameters	There are no parameters.
Command	There is only a query form of this command available.
Query	Reads and returns the date of the next check to be performed on this device. The command will return 3 integers.
Example	:SERVICE:CHECK:NEXT? String returned in this example: 2005,04,01.

:SERVice:DEVice:TYPE?

Syntax	:SERVice:DEVice:TYPE?
Parameters	There are no parameters.
Command	There is only a query form of this command available.
Query	Reads and returns the type of your Willtek 9101. The command will return a string.
Example	:SERVice:DEVice:TYPE? String returned in this example: "9101".

:SERVice:DEVice:TEXT?

Syntax	:SERVice:DEVice:TEXT?
Parameters	There are no parameters.
Command	There is only a query form of this command available.
Query	Reads and returns the description text of your Willtek 9101. The command will return a string.
Example	:SERVice:DEVice:TEXT? String returned in this example: "Willtek 9101 Handheld Spectrum Analyzer".

:SERVice:DEVice:CALibration:NUMBER?

Syntax	:SERVice:DEVice:CALibration:NUMBER?
Parameters	There are no parameters.
Command	There is only a query form of this command available.
Query	Reads and returns the calibration number of your Willtek 9101. The command will return a string.
Example	:SERVice:DEVice:CALibration:NUMBER? String returned in this example: "1234".

:SERVice:EDEvice:SERialnumber?

Syntax	:SERVice:EDEvice:SERialnumber?
Parameters	There are no parameters.
Command	There is only a query form of this command available.
Query	Reads and returns the serial number of the external device connected to your Willtek 9101. The command will return a string.
Example	:SERVice:EDEvice:SERialnumber? String returned in this example: "00100202".

:SERVICE:EDEVICE:TYPE?

Syntax	:SERVICE:EDEVICE:TYPE?
Parameters	There are no parameters.
Command	There is only a query form of this command available.
Query	Reads and returns the type of the external device connected to your Willtek 9101. The command will return a string.
Example	:SERVICE:EDEVICE:TYPE? String returned in this example: "1234".

:SERVICE:EDEVICE:TEXT?

Syntax	:SERVICE:EDEVICE:TEXT?
Parameters	There are no parameters.
Command	There is only a query form of this command available.
Query	Reads and returns the description text of the external device connected to your Willtek 9101. The command will return a string.
Example	:SERVICE:EDEVICE:TEXT? String returned in this example: "VSWR Bridge".

:SERVICE:EDEVICE:CALibration:DATE?

Syntax	:SERVICE:EDEVICE:CALibration:DATE?
Parameters	There are no parameters.
Command	The command form is not available.
Query	Returns date of last calibration by Willtek of the external device connected in the form yyyy,mm,dd.
Example	:SERVICE:EDEVICE:CALibration:DATE? String returned in this example: "2004/12/31".

:SERVICE:EDEVICE:CALibration:NUMBER?

Syntax	:SERVICE:EDEVICE:CALibration:NUMBER?
Parameters	There are no parameters.
Command	There is only a query form of this command available.
Query	Reads and returns the calibration number of the external device connected to your Willtek 9101. The command will return a string.
Example	:SERVICE:EDEVICE:CALibration:NUMBER? String returned in this example: "1234".

SCPI errors

The following table lists the error numbers which the 9101 may return in case of a problem.

Error number	Error description
Command errors	
-100	Internal error only, for debugging purposes (Command error)
-101	Invalid character in command string
-102	SCPI syntax error: Command is not available as a query, or vice versa
-103	Invalid separator between parameters
-104	Data type error (mismatch between parameters and allowable data formats)
-108	Parameter not allowed (too many parameters)
-109	Missing parameter (too few parameters)
-111	Header separator error (probably colon missing between command keywords)
-112	Program mnemonic too long (i.e. longer than 12 characters)
-113	Keyword not found in command list
-114	Header suffix out of range (invalid character in command keyword)
-121	Invalid character in number (not a digit, or exponent value missing)
-123	Exponent out of range
-128	Numerical data not allowed
-131	Invalid suffix (appended unit not found)
-134	Suffix too long (appended unit is longer than 12 characters)
-138	Suffix not allowed (parameter type is not real)
-141	Invalid character data (parameter expression is not in pre-defined list)
-144	Character data too long (string data longer than allowed)
-158	String data not allowed for this parameter type
-160	Internal error only, for debugging purposes (block data error)
-168	Internal error only, for debugging purposes (block data not allowed)

Execution errors	
-201	Internal error only, for debugging purposes (SCPI execution function not defined)
-202	Internal error only, for debugging purposes (SCPI query function not defined)
-210	Internal error only, for debugging purposes (out of memory)
-222	Data out of range
-230	Internal error only, for debugging purposes (invalid token received by EXEC)
-231	Internal error only, for debugging purposes (invalid index for parameter)
-232	Internal error only, for debugging purposes (invalid parameter)
-233	Internal error only, for debugging purposes (parameter has wrong type)
-234	Internal error only, for debugging purposes (parameter missing)
-235	Internal error only, for debugging purposes (index error)
-236	Parameter out of range
-260	File name not found in defined directory
-261	File creation failed in defined directory
-262	Internal error only, for debugging purposes (label not found, config file)
-264	Error while saving or recalling trace file
Device-dependent errors	
-300	SYSTEM_ERROR
-310	Internal error only, for debugging purposes (error no. not found)
-311	Internal error only, for debugging purposes (function not yet supported)
-319	Error queue overflow (more than 10 entries)
-320	Wrong password
-321	Internal error only, for debugging purposes (serial number error)
-322	Wrong option key
-323	Option not available
-330	Download command error
-331	Upload command error
Query errors	
-400	Checkrule conflict, parameters outside limits
-401	Internal error only, for debugging purposes (EPROM write error)

-402	Internal error only, for debugging purposes (EEPROM read error)
-410	Result not valid

9100 Data Exchange Software

8

This chapter describes how to install and use the 9100 Data Exchange Software. The topics discussed in this chapter are as follows:

- “About the 9100 Data Exchange Software” on page 162
- “Installation requirements” on page 162
- “Understanding the license conditions” on page 162
- “Installing the software” on page 162
- “Starting the software” on page 163
- “Connecting the PC to the 9101” on page 164
- “Loading measurement results from the 9101” on page 165
- “Saving, loading and printing results on the PC” on page 169
- “Creating screen shots” on page 171
- “Working with measurement results” on page 172
- “Defining and loading limit templates” on page 174
- “Defining and loading external coupling parameters” on page 178
- “Managing communication systems for channel power measurements” on page 179
- “Managing files on the PC and on the 9101” on page 181

About the 9100 Data Exchange Software

The 9101 is delivered with a software product, the 9100 Data Exchange Software. This is a tool to load and display measurements from the 9101 to the PC and to install software updates on the 9101.

Installation requirements

To install the 9100 Data Exchange Software, you need

- a PC with Pentium processor or equivalent
- Windows 98SE, Windows NT or later versions
- a minimum of 32 megabytes of RAM
- 50 megabytes of free space on the hard disk
- a free serial interface or a LAN connection

Understanding the license conditions

Before installing the 9100 Data Exchange Software, ensure that you understand the license terms which can be found in the appendix ["Software License" on page 215](#). The software may only be installed on one computer at any one time!

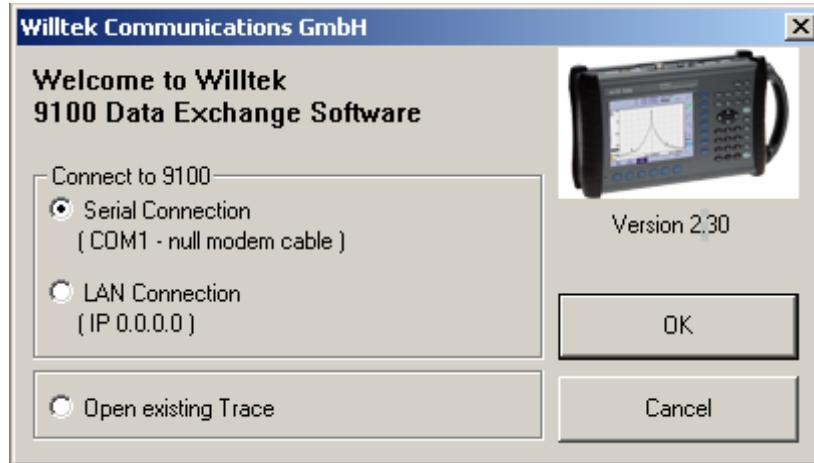
Installing the software

If you received the software on a CD, just insert the CD in the CD drive of your PC.

Run **9100DataExchange.exe**.

This will start the install wizard which will copy the required files onto your PC.

Follow the instructions given by the install wizard.


By default, the install wizard will store the program files in the following directory (assuming an English Windows installation):

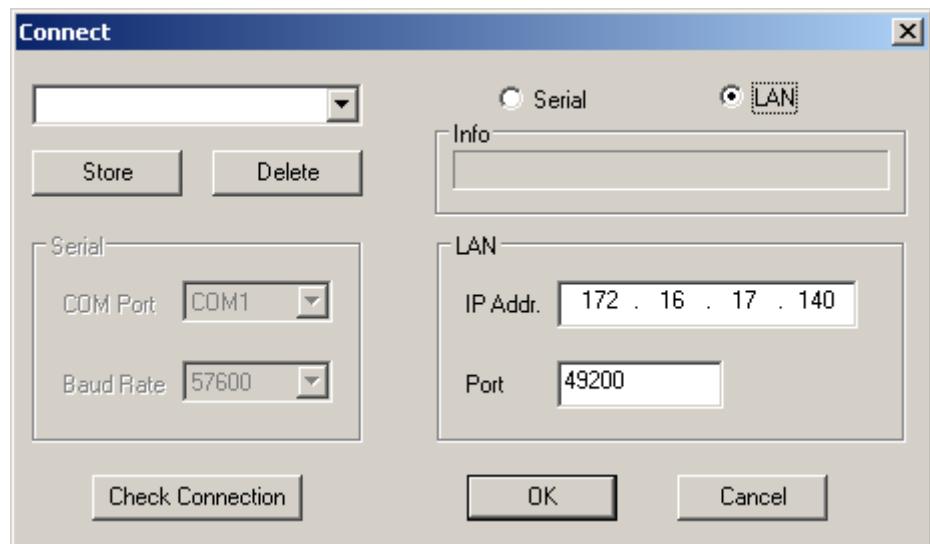
C:\Program files\Willtek\9100 Data Exchange.

Starting the software

Click **Start > Programs > Willtek > 9100 Data Exchange** to run the 9100 Data Exchange Software.

The following box appears:

To connect to the 9101 via serial connection (RS-232 interface on a COM port of the PC), select **Serial Connection**.


To connect to the 9101 via a local area network (LAN) over TCP/IP, select **LAN Connection**.

If you do not want to connect to the 9101 but rather open a measurement trace file that has been previously stored on the PC, select **Open existing Trace** or **Cancel**.

Connecting the PC to the 9101

In order to connect the PC to the 9101, you need to configure the 9100 Data Exchange Software first.

From the menu bar, select **Connection Settings > Serial / LAN for 9100...**. This will open the Connect pull-up menu as shown below:

Using a predefined configuration for the connection

If you have previously stored configuration data for a successful connection with the 9101, you can proceed as follows:

- 1 Connect the 9101 with the PC using a serial interface cable or the LAN, depending on the configuration you want to use.
- 2 In the Connect dialog box of the 9100 Data Exchange Software (see above), load the configuration by selecting a name from the drop-down list box or in the upper left-hand corner of the Connect menu. Click on **OK** to load this configuration.
The PC will now attempt to exchange messages with the 9101 over the interface defined in the configuration file. The Connect dialog box will disappear and if a connection has been set up successfully, the status bar of the PC software will indicate CONNECTED.

Serial interface connection

- 1 Select the **Serial** radio button.
- 2 Select the baudrate (bit rate) that is set up in the 9101 as well.
- 3 Select a serial port (e.g. COM1).
- 4 Switch on the 9101 and connect it to the PC using a null modem cable as specified in "[Connecting the PC to the 9101](#)" on page 164.

- 5 Click on **Check Connection** to verify that the connection is working over the selected COM port.

The PC will now attempt to exchange messages with the 9101 over the cable attached to the selected serial port. The Connect dialog box will disappear and if a connection has been set up successfully, the status bar of the PC software will indicate CONNECTED.

LAN (TCP/IP) connection

- 1 In the Connect pull-up menu, select the **LAN** radio button.
- 2 Enter the IP address of the 9101. The IP address of the 9101 can be read and modified over an RS-232 link using the SCPI command; see "[Changing the IP address of the 9101](#)" on page 38 for information on changing the IP address of the 9101.
- 3 Enter the IP port number in the Port input field. Valid entries are in the range from 1024 to 65535; the default is 49200.
- 4 Switch on the 9101 and connect both 9101 and PC to the computer network with a normal patch cable, or connect them directly with each other using a cross patch cable.
- 5 Click on **Check Connection** to verify that the connection is working over the selected LAN connection.

The PC will now attempt to exchange messages with the 9101 over the network. The Connect dialog box will disappear and if a connection has been set up successfully, the status bar of the PC software will indicate CONNECTED.

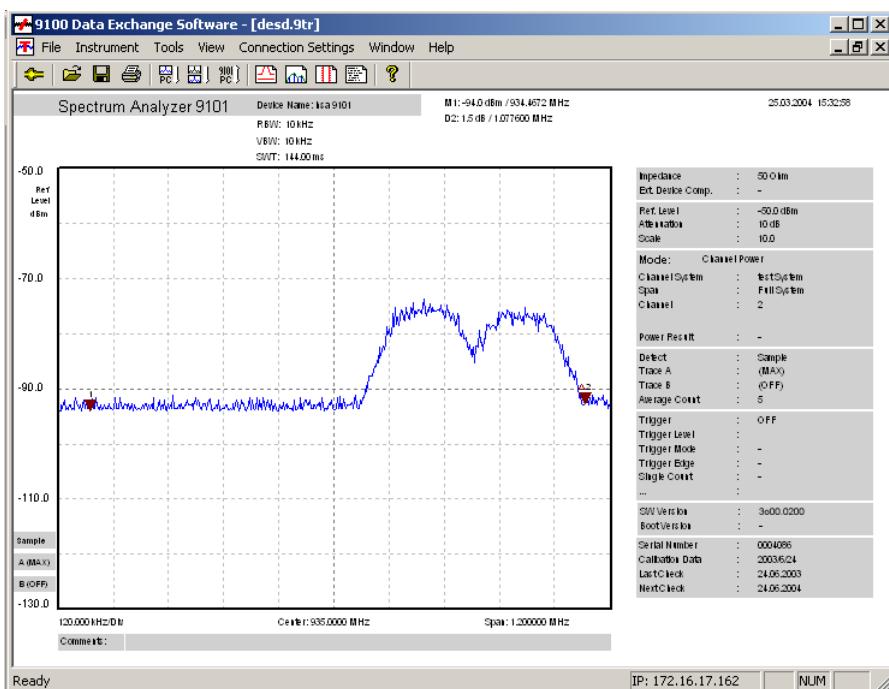
Saving the configuration

You can save the configuration in a file for later use so that you do not have to reenter the configuration each time you are using 9100 Data Exchange Software.

- 1 In the entry field at the upper left-hand corner, enter a configuration name that allows you to identify the configuration that you have made. Several configurations can be stored under individual names.
- 2 Press **Store** to save the current configuration.

Loading measurement results from the 9101

The 9100 Data Exchange Software can load and display a measurement (trace) from the 9101 in two different ways. The software can load either the trace currently displayed or a trace that is saved in the 9101 memory. Using the Live Trace command available in the Instrument menu you can also display a live trace in real mode with updates continuously performed. Note that the 9100 Data Exchange Software can hold multiple windows, each with a trace.


Viewing the actual trace on the PC

- 1 Connect the PC to the 9101 as described on [page 164](#).
- 2 In the 9100 Data Exchange Software, select **Instrument > Display Trace**, or press **Ctrl+T**, or click on the icon:

The trace is displayed in the program window (see example below). You can resize or maximize the trace within the program window.

- 3 To store the results on a local PC drive, select **File > Save** or **File > Save as** and choose a directory and file name.

The trace file is stored on your PC.

NOTE

The trace will also display any active limits. When working in channel power mode, the trace will include the communication system name.

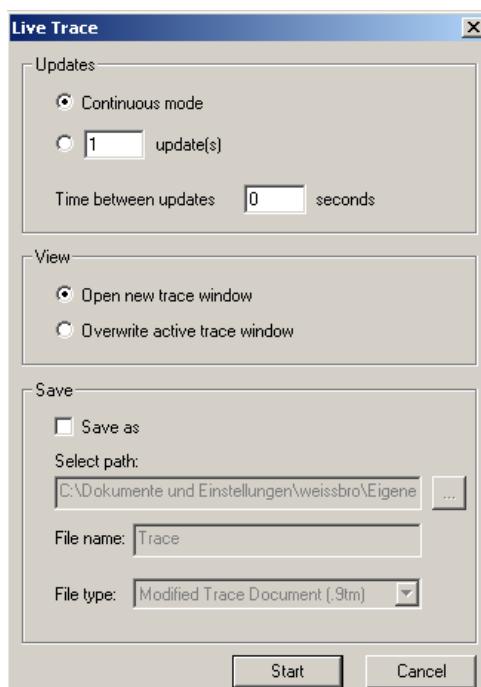
Toggling the view mode

You can switch the trace display from landscape to portrait and vice versa. In order to toggle the view mode proceed as follows:

- 1 Select **View > View Mode**. You can also right-click on the screen to open a right-click menu and select **View Mode**.
- 2 Select the view mode Landscape or Portrait. The display changes accordingly.

Showing and hiding parameters

You can display and hide trace parameters by selecting **View > Show All Parameters** or **View > Hide All Parameters**.

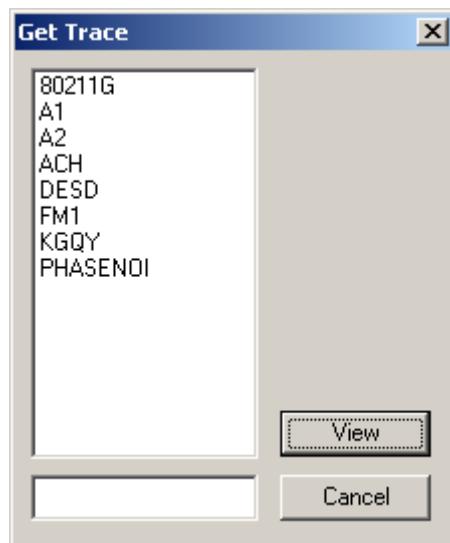

Showing and hiding markers

You can display and hide markers by selecting and deselecting **View > Markers Trace A** or **View > Markers Trace B**. On selecting to show the markers a tick is displayed next to Markers Trace A or Markers Trace B.

Continually loading live traces

You can also continually load live traces from the instrument in real-time mode which is particularly useful for monitoring ongoing measurements on your PC. To continuously download traces displayed on the 9101's screen proceed as follows:

- 1 Select **Instrument > Live Trace**, press **Ctrl+L**, or click on the icon in the menu bar: . The Live Trace Screen is displayed. On this screen you can specify several settings for the live trace process.


- 2 In the Updates frame select **Continuous mode**, if you want the live trace to be updated continuously until you stop the process manually. If you want to specify a fixed number of update cycles after which the process will be stopped automatically, select the second control box and enter the number of updates to be performed. In the **Time between updates** field, enter the number of seconds between each update cycle.
- 3 In the View frame select **Open new trace window**, if you want to display the live trace in a separate new window. If you want to overwrite the active trace, select **Overwrite active trace window**.
- 4 If you intend to save the live trace in a file on completion of the live trace update process, select **Save as** in the Save frame. Now the Save fields are activated enabling you to select a directory, a file name and the file type for saving your trace on your PC. You can save the traces as *.9tm or graphic files (e.g. *.bmp, *.jpg etc.). For further details on saving traces on your PC refer to "["Saving, loading and printing results on the PC" on page 169](#)".

Transferring a saved trace to the PC

To load the data saved in the 9101 proceed as follows:

- 1 On the 9101, save the desired measurements in trace files.
- 2 Connect the PC to the 9101 as described on [page 164](#).
- 3 In the 9100 Data Exchange Software, select **Instrument > Get Trace**, or press **Ctrl+G**, or click on the icon:

This will load and display a list of trace files that reside on the 9101 (see example below).

- 4 Select the desired trace file(s) and click **View**.
The trace is displayed in the program window. You can resize or maximize the trace within the program window.
- 5 To store the results on a local PC drive, select the window with the trace to be stored, select **File > Save** or **File > Save as** and choose a directory and file name. The default directory is Traces inside your 9100 Data Exchange installation directory.
The trace file is stored on your PC with the extension *.9tm differentiating it from the original trace saved on the 9101 and obtained by the Get Trace procedure. These trace files have the extension *.9tr.

NOTE

*9tr trace files can also be transferred in both directions using the Traces tab in the **Instrument > Data Transfer...** menu.

Saving, loading and printing results on the PC

Once a measurement trace has been transferred to the PC, it can be stored on the hard disk, printed or exported to a graphics or text file.

Storing results on the PC

The trace, along with the 9101 settings and markers, can be saved in a file and loaded again in a trace file. This way, information about settings and individual result values will not be lost.

- 1 Select **File > Save or File > Save As ...**
A window with a file selection box appears.
- 2 Select a directory and a file name to save the trace data, and confirm by pressing **ENTER**.
The trace data are saved in a file.

Loading a trace file on the PC

Results previously stored on the PC can be retrieved and displayed in the 9100 Data Exchange Software.

- 1 Select **File > Open**.
A window with a file selection box appears.
- 2 Select the directory and the file name containing the trace data, and confirm by pressing **ENTER**.
The trace data are loaded to the 9100 Data Exchange Software.

Printing measurement results

- 1 Select **File > Print Setup...** and set up the correct printer, the paper orientation and printer-dependent settings. Confirm the changes made by pressing **ENTER**.
- 2 You can check the layout before printing by selecting **File > Print Preview**.
- 3 Go to the **File > Print** menu to select the pages to print and start printing by pressing **ENTER**. If you have opened several documents and you intend to print them in one go, select **File > Print Open Documents....**

Saving results to a graphics file

If you save the results in a graphics file, you can load them in other applications such as a word processor and include them in your documentation in graphical format. File formats supported are:

- Windows Bitmap (BMP)
- JPEG (JPG/JPEG)
- JPEG2000 (J2K/JP2)
- Tagged Image File Format (TIF/TIFF)
- Zsoft Paintbrush (PCX)
- Portable Network Graphics (PNG)
- Sun Raster (RAS)
- Truevision Targa (TGA)
- Portable Bitmaps (PPM/PGM)

1 Select **File > Export > Image**.

A file selection box appears ("Save image file").

2 Select a directory, a file name to save the measurement trace and a file format, and confirm by pressing **ENTER**.

The trace data are stored as a graphics file in the selected location.

Saving results to a text file

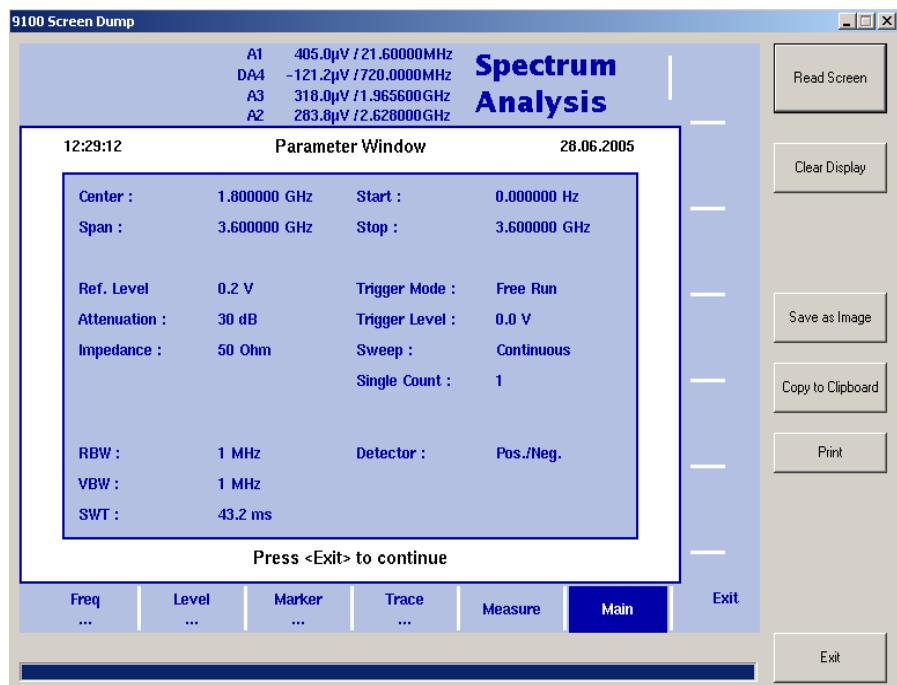
You can use the numerical results and include them in other applications for postprocessing, e.g. in Microsoft Excel.

1 Select **File > Export > ASCII file**.

A file selection box appears ("Save Trace as ASCII File...").

2 Select a directory and a file name to save the measurement data, and confirm by pressing **ENTER**.

The data are stored in a text file (*.TXT) in the selected location.


Each line in the resulting text file contains a parameter from the settings; the parameter name is separated from its value by a semicolon.

Creating screen shots

The 9100 Data Exchange Software also offers a Tool for directly producing screen shots of the software screen displayed on the 9101. Using the Screen Dump tool you can easily create screen shots, save them as image files, copy them to the clipboard as well as print them directly.

In order to create screen shots proceed as follows:

- 1 Select **Instrument > Screen Dump**, or press **Ctrl+N**, or click on the icon in the menu bar: . The Screen Dump window is displayed.
- 2 In order to display the screen currently shown on the 9101 in the Screen Dump window click on **Read Screen**. The screen originating from the 9101 will be displayed in the Screen Dump window as follows.

- 3 In order to save the screen shot as an image file click on **Save as Image**. A file selection box appears ("Save image file").
- 4 Select a directory, a file name to save the measurement trace and a file format, and confirm by pressing **ENTER**.
The trace data are stored as a graphics file in the selected location.
- 5 In order to copy the screen shot for further usage in other applications click on **Copy to Clipboard**.
- 6 In order to print the screen shot directly from the Screen Dump tool click on **Print**.

NOTE

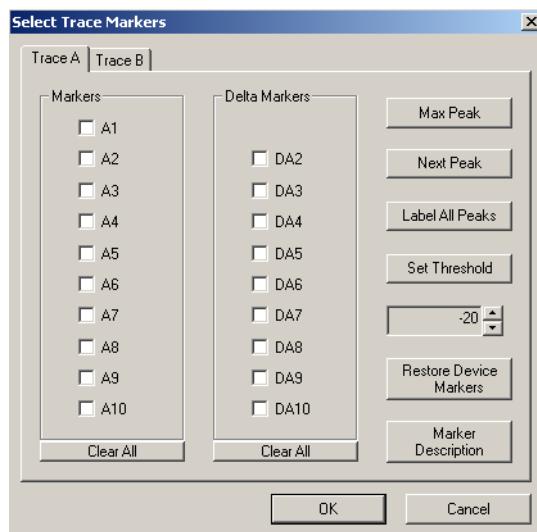
For best results it is recommended to use a local printer as opposed to a printer connected to a network.

- 7 If you intend to create another screen shot, click on **Clear Display** and proceed as described.
- 8 To close the Screen Dump tool click on **Exit**.

Working with measurement results

To open a measurement trace that has been previously loaded from the PC, select **File > Open**.

This will open a file selector box from which you can select a directory and a trace file.


Adding markers

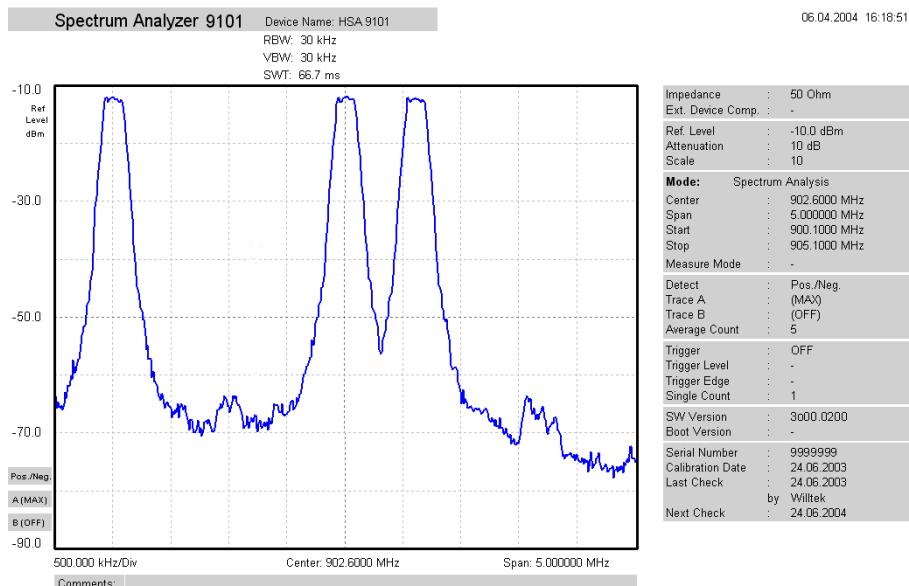
The 9101 already provides up to six markers; the marker positions are stored and transferred together with the trace. You can use markers on trace A and trace B.

In addition to these static markers, you can use additional dynamic markers on the PC to read out the level values at any displayed frequency. Up to ten markers per trace are possible.

In order to enable or disable markers on the PC proceed as follows:

- Select **View > Select Trace Markers**. You can also right-click on the screen to open a right-click menu and choose **Select Trace Markers**.
The Select Trace Marker window is displayed.

- To enable a marker select the required marker by checking the relevant control box in the Marker area (A1 to A10 or B1 to B10). To enable a delta marker check the relevant control box in the Delta Marker area (DA2 to DA10 or DB2 to DB10).
- To put a marker on the maximum peak click on **Max Peak**.
- To put a marker on the next peak click on **Next Peak**.
- To put a marker on all peaks (up to the 10 supported markers) click on **Label All Peaks**.


- To set a threshold for the Label All Peaks function click on **Set Threshold**. The button label changes to **Clear Threshold**. Specify your threshold in the field below by clicking on the up and down arrows. the threshold will be displayed as a read line. If you want to remove the limit, click on **Clear Threshold**. After specifying the threshold only peaks above the threshold will be labeled.
- To enter descriptions for the markers set click on **Marker description**. A **Marker Description** window is displayed. Enter the descriptions for the markers set and click on **OK**. The descriptions will be displayed behind the markers in portrait format display.
- To move the marker to another frequency, drag it with the mouse. Alternatively, use the **LEFT/RIGHT** (slow movement) or **UP/DOWN** (larger steps) cursor keys on the keyboard.

Change the reference level and scale

In order to change the reference level and scale proceed as follows:

- 1 Select **View > Level**. The **Level** window is displayed.
- 2 Use the up and down arrows of the **Ref.** field to specify the reference level.
- 3 Specify the scale in the **Scale** field
- 4 In the **Level Unit** field you can select a unit from the dropdown list.

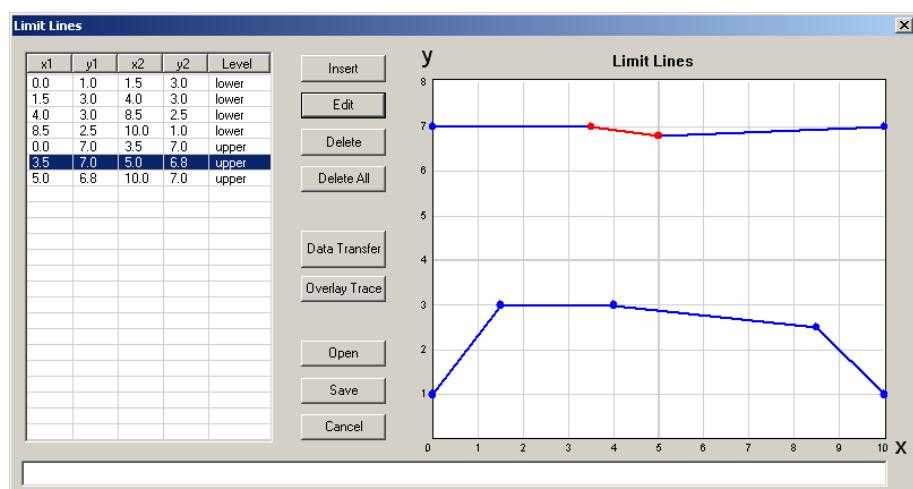
Using a grid

The grid of vertical and horizontal lines can be switched on and off with **View > Grid**. You can also right-click on the screen to open a right-click menu and select **Grid**. The grid is the same as on the 9101, i.e. it consists of eight horizontal and ten vertical rows.

Entering text

You can add text to the trace and store it with the measurement. This way, you can add valuable information about the conditions of the measurement. The comment text will be printed and saved with the graph but not exported to a graphics or text file.

- 1 Select **View > Comment**.
A "Comment" window opens, allowing you to enter text.
- 2 Enter your text (three lines maximum), then click on **Save** to have the 9100 Data Exchange Software store the text along with the measurements.

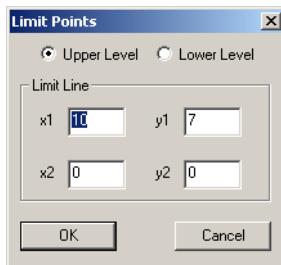

Defining and loading limit templates

One of the powerful features of the 9101 is its capability to compare the measurements with predefined limits. The limits are set in the form of a template that the actual measurement passes or fails. The template can be defined on the PC using the 9100 Data Exchange Software and then loaded to the 9101; the 9101 can hold up to 99 templates.

Editing a template may be easier when an example of a typical result trace is available. The Limits Editing menu of the 9100 Data Exchange Software cannot only show the actual limit curve (template) but also an example trace that is stored on the PC.

Templates can be applied to measurements in both the spectrum and the time domain. An example of a limit template in the time domain is the power/time template for GSM phones.

The limits are expressed relative to the grid on the 9101 display, not as absolute values in terms of frequency (or time) and power. This way, you can apply the same template to different power levels and frequencies provided that the scales are as intended.


Defining limits

Limits can be defined as a template with an upper and and a lower limit curve. Each curve consists of a number of straight lines between points. The Limits menu of the 9100 Data Exchange Software allows you to enter and display such lines.

The limits are expressed relative to the grid on the screen, with eight horizontal and ten vertical lines. The coordinates of each point (in x/y coordinates) correspond to these lines.

To define a new template, proceed as follows:

- 1 In the 9100 Data Exchange Software, select **Tools > Limit Editor...** or click on the icon in the menu bar: .
The Limit Lines window is displayed, with a limits coordinates table on the left and the limit lines on the right-hand side.
- 2 To enter a new limit line, press **Insert**.
A window appears, allowing you to enter the x/y coordinates for two points.

- 3 Select whether you wish to define an upper or lower limit by selecting one of the **Upper Level** and **Lower Level** radio buttons.
- 4 Enter the coordinates for the first point of the limit line (x1, y1).
- 5 Enter the coordinates for the second point determining the limit line (x2, y2). You can also move the limit lines afterwards by dragging them with your mouse.
- 6 Confirm your choice and close the window by selecting **OK**.
The window disappears. The values are entered in the limits table on the left and the limit line is shown in the limit lines graph on the right.
- 7 Enter more limit lines as described above to complete the template according to your requirements.

Changing limit lines

You can change the template by modifying or deleting individual limit lines:

- 1 In the table within the Limit Lines window, click on the line that you want to modify or delete.
The line within the table is highlighted and the corresponding limit line in the graph is shown in red.
- 2 To modify the limits, click on **Edit** or double-click on the row. A dialog box appears, allowing you to change the limits.
To delete a limit line, click on **Delete**.

Alternatively, to change the starting or ending point for an existing limit line, proceed as follows:

- 1 In the graph within the Limit Lines window, click on the starting point of a limit line that you want to modify.
- 2 Point the mouse to the starting or ending point of the limit line, keep the left mouse button pressed and drag the point to its new position and release it there.

Displaying an example trace in the Limits Editing menu

- 1 In the Limit Lines window, select **Overlay Trace**.
A file selection box appears.
- 2 Select a trace file from the default or any other directory, and click on **Open**.
The file selection box disappears and the trace data is displayed in the limit lines box on the right-hand side of the Limit Lines window.

Storing a template on the PC

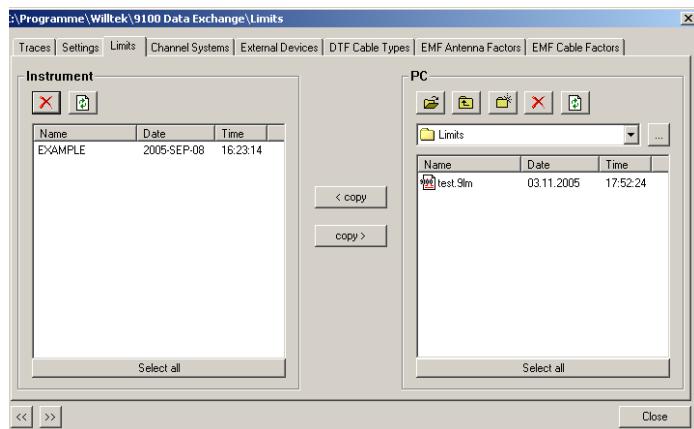
A template can be stored on the PC, e.g. to allow modifications later or to download it to different 9101 analyzers at any time.

- 1 In the Limit Lines window, select **Save**.
A window opens ("Save Limit Lines").
- 2 Choose a directory and enter a file name to save your limits template.
- 3 Confirm your choice by pressing **ENTER**.
The limits are saved in a file.

Loading a template from the PC

To modify or to load a template to a 9101 that has previously been stored on the PC, proceed as follows:

- 1 In the Limit Lines window, select **Open**.
A file selection window appears ("Open Limits File...").
- 2 Select the directory and the file containing a template file previously stored with the 9100 Data Exchange Software.
- 3 Confirm your choice by pressing **ENTER**.
The limits are loaded to the limits table and the graph. You can now modify the limits (see section "[Changing limit lines](#)" above), or download the limits to the 9101.


Transferring a template to the 9101

- 1 Define a template or load it from the PC's hard disk as described above.
- 2 Ensure that the PC is connected to the 9101 either via RS-232 or LAN.

3 Select **Data Transfer**.

If the template (characterized by its limit lines) is not yet stored you will be asked if you want to save it on the PC harddisk. If you choose not to store the template, your changes will be lost.

The Data Transfer window is displayed with the Limits tab active.

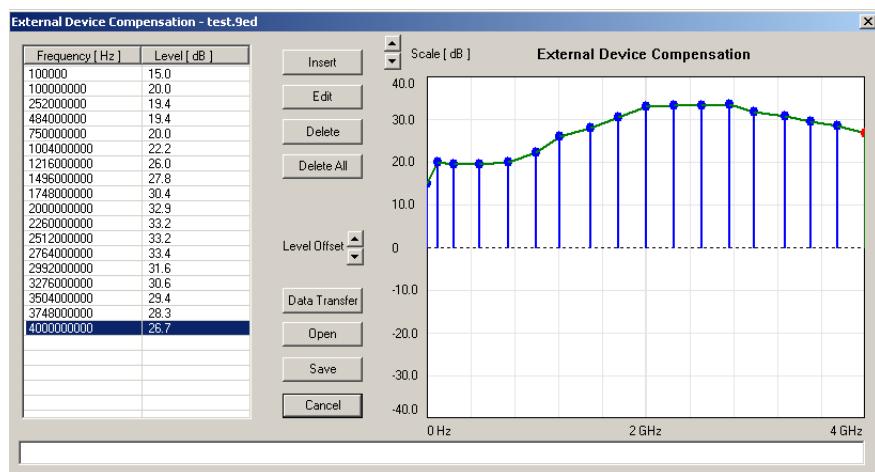
4 Choose a limits file (or multiple files) on the PC side (right-hand side) of the Data Transfer window, and click on **< copy**.

The 9101 will, if not done so previously, ask whether to connect to the 9101. In that case, follow the instructions in section "[Connecting the PC to the 9101](#)" on page 164.

The file name on the 9101 will only carry the first 11 characters of the file name that was used on the PC.

If a limits file on the PC has been selected for transfer and a limits file with the same name already exists on the 9101, the 9100 Data Exchange Software will display a pop-up box with the file name in question in the header bar, and offer several possibilities:

- Click on **Yes** if you want to overwrite the file in question.
- Click on **No** to cancel transmission of the file in question.
- Click on **Yes to All** to copy all files to the 9101, irrespective of duplicate file names.
- Click on **No to All** to prevent overwriting of all files with duplicate file names.
- Click on **Rename** to enter a new file name applying to that file when downloaded to the 9101.
- Click on **Cancel** to cancel transmission of all files, no matter whether file names already exist on the 9101 or not.


The 9100 Data Exchange Software will indicate when the download has been completed successfully.

5 On the 9101, press **ESCAPE** to return to local mode. You can then start using the limits template.

Defining and loading external coupling parameters

The 9101 Handheld Spectrum Analyzer can compensate a defined gain or attenuation introduced by external equipment between the device under test and the 9101. The coupling can be specified in the 9100 Data Exchange Software; several files for different devices can be defined, stored and downloaded to the 9101. Furthermore, on installing the 9100 Data Exchange Software two files with external coupling parameters are automatically saved to the Extdev directory of your 9100 Data Exchange directory on the PC. Once downloaded, the compensation of effects from external devices can be switched on and off at any time. The 9101 takes the coupling factor into account before presenting the measurement result.

Gain and attenuation are frequency-dependent in most cases; therefore the 9100 Data Exchange Software allows you to enter interpolation points to cover the frequency-dependent coupling factor over the whole frequency range of interest.

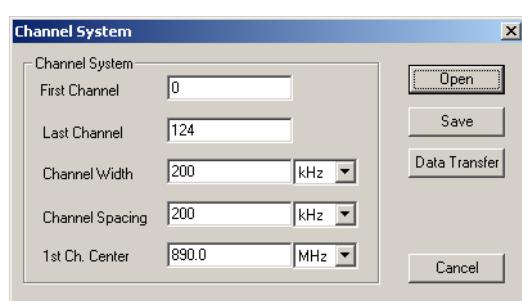
Defining the external coupling factor

- 1 Open the External Device Compensation menu by selecting **Tools > External Device Editor...** or by pressing **Alt+E** or by clicking on the icon:
- 2 To enter an interpolation point, select **Insert**. A dialog box appears, allowing you to enter frequency and level.
- 3 Enter the frequency, select a unit (from hertz to gigahertz) and enter the coupling factor (in dB). **Positive factors indicate signal attenuation, negative factors indicate gain in the signal line.**
- 4 Close the box by pressing **OK** and repeat the last two steps with as many interpolation points as available. The frequency-dependent compensation curve appears on the right-hand side as values are entered.
- 5 If you want to change a factor, either select a line from the table on the left-hand side and click on **Edit** to change the values numerically, or point with the mouse to an interpolation point in the graph on the right and drag it to a new position.

- 6 To move the whole interpolation curve up or down in steps of 1 dB, click on the **Level Offset** arrow buttons.
- 7 When completed, save the device compensation values in a file on the PC: Click on **Save**, enter a file name and confirm by clicking on **Save**.
- 8 Press **Cancel** to close the External Device Compensation window.

Loading an external coupling loss file to the 9101

One or more files with external coupling loss data can be transferred to the 9101 and reside in the internal memory of the 9101. They will not be taken into account until they are activated (see "[Compensating gains and losses](#)").


- 1 Select **Instrument > Data Transfer (Ctrl-D)**, or in the External Device Compensation menu, select **Data Transfer**.
The Data Transfer menu opens.
- 2 In the External Devices tab, select a directory and file(s) on the right-hand side and press **< copy**.
The selected files are transferred to the 9101.

Managing communication systems for channel power measurements

Measurements in channel power mode imply that a communication system with predefined channel numbers and associated frequencies has been defined. The 9101 comes with a few systems preinstalled; more systems are available for download to the 9101 in the 9100 Data Exchange Software, for example Wireless LAN, Bluetooth and TETRA. For a complete listing of the communication systems available in the 9100 Data Exchange Software refer to "[Predefined channel power communication systems](#)" on page 203. Here you will also find a listing of the communication systems preinstalled on the 9101. Other systems' data can be easily entered on the PC using the 9100 Data Exchange Software. Each set of system data can be stored in a separate file; one or multiple files can be downloaded to the 9101. For downloading and copying system files between the PC and the 9101, see section "[Managing files on the PC and on the 9101](#)" below. Once data are stored in the 9101, they can be used as described in section "[Operating in channel power mode](#)" on page 76.

Editing communication system parameters on the PC

- 1 Select **Tools > Channel System Editor...** or by pressing **Alt+C** or by clicking on the icon in the menu bar: .

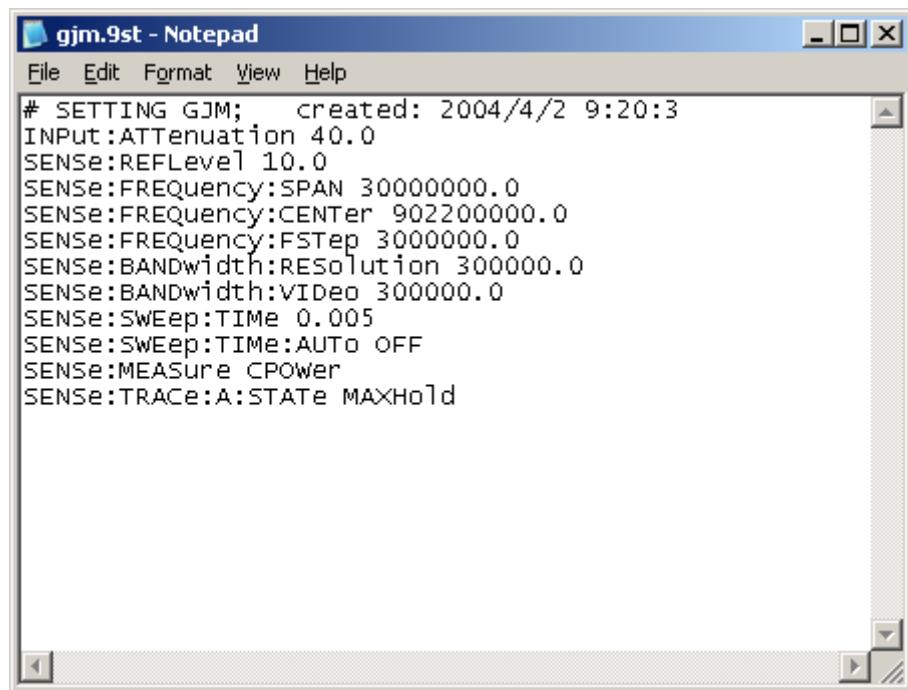
The Channel System menu appears.

- 2 If you want to edit a communication system that is already stored on the PC, press **Open**, select the appropriate directory and file, and press **ENTER** or click on **Save**.
- 3 Enter the first and the last valid channel number of the system.
- 4 In the Channel Width line, enter the measurement bandwidth (separate input fields for value and unit).
- 5 In the Channel Spacing line, enter the frequency spacing (including the unit) between consecutive channel numbers.
- 6 Enter the carrier frequency (including the unit) corresponding to the first channel number in the **1st Ch. Center** line.
- 7 Click on **Save**.
A dialog box appears, allowing you to enter a name for the file in which the channel system parameters of the communication system shall be stored.
- 8 Enter a file name and press **ENTER** or click on **Save**.
The data are stored and the dialog box disappears.
- 9 To transfer the data to the 9101, press **Data Transfer**. To close the Channel System window, press **Cancel**.

Working with settings

The 9101 allows to store and recall settings (see section ["Working with stored settings" on page 43](#)). This can be useful when you want to perform measurements under exactly the same conditions as at an earlier time. With the 9100 Data Exchange Software, you can transfer the settings from a 9101 to the PC for backup purposes or to replicate the settings to another 9101. Another useful application is to manipulate settings on the PC; this is easily done because the settings file is editable and the format consists of SCPI commands. Changing or adding a setting is equivalent to changing or adding a line in the settings file.

Exchanging a settings file between 9101 and PC


The settings stored on the 9101 can be copied to the PC with the 9100 Data Exchange Software. Use the Settings tab within the Data Transfer utility to copy files between the PC and the 9101. See section ["Managing files on the PC and on the 9101" on page 181](#) for more details.

Changing 9101 settings on the PC

Take the following steps to change and amend a settings file for later transfer and usage on the 9101.

- 1 In the 9100 Data Exchange Software, select **Tools > Setting Editor** or press **Alt+S**.
The 9100 Settings box appears.
- 2 Click on **Open** to open an existing settings file on the PC. The Open Settings File... dialog box appears.

- 3 Select the directory and settings file that you want to modify, and click on **Open**. An additional program window with the Microsoft Windows text editor Notepad opens, and the selected file is displayed.

- 4 Modify or add lines with SCPI commands for the desired settings. Refer to chapter ["SCPI Command Reference" on page 101](#) for correct syntax and value range of the parameters.
- 5 Save and close the file within Notepad, and return to 9100 Data Exchange Software to transfer the file to the 9101.

Managing files on the PC and on the 9101

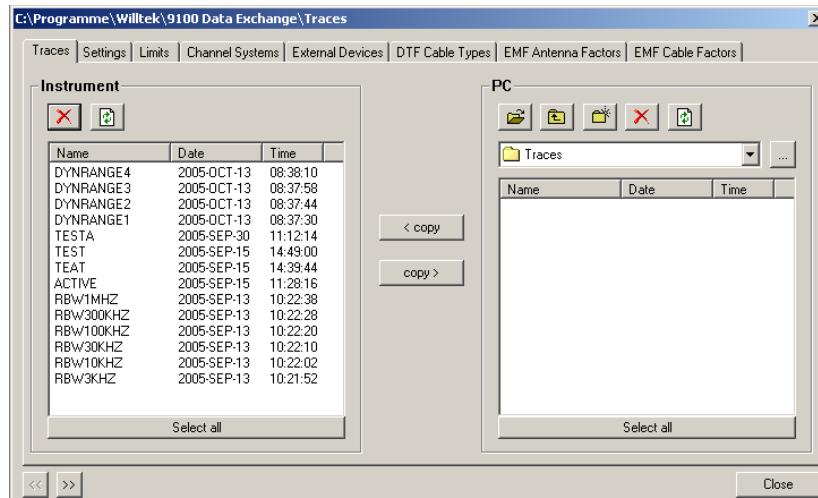
There are various types of settings which can be maintained from the PC using the 9100 Data Exchange Software. This section explains how data can be transferred between the 9101 and the PC, maintained and deleted.

File types and directory structure

Each type of setting stored on the PC has a preferred file name extension and directory for different sets of parameters. The table below summarizes this file structure.

Table 13 Configuration file types

Type	File names	Directory
Traces	*.9tr	9100 Data Exchange\Traces
Modified traces saved on the PC	*.9tm	9100 Data Exchange\Traces
Settings	*.9st	9100 Data Exchange\Settings


Table 13 Configuration file types

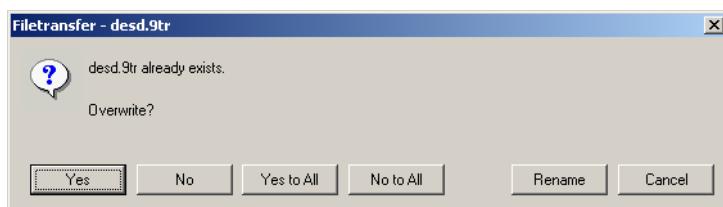
Type	File names	Directory
Limits	*.9lm	9100 Data Exchange\Limits
Systems	*.9sy	9100 Data Exchange\System
External device	*.9ed	9100 Data Exchange\Extdev
DTF cable type	*.9ct	9100 Data Exchange\Cable Types
EMF antenna factor	*.9af	9100 Data Exchange\Antenna Factor
EMF cable factor	*.9cf	9100 Data Exchange\Cable Factor

Starting the File Manager

The files on the PC and on the 9101 can easily be selected, copied and deleted via the Data Transfer window.

- 1 In the 9100 Data Exchange Software, select **Instrument > Data Transfer** (or **Ctrl-D**).
The Data Transfer window is displayed.

- 2 Select the appropriate tab (Traces, Settings, Limits, Systems, Ext. Device) either by clicking on it with the mouse, or by moving the tab selection with the << and >> buttons.
The window displays the appropriate files available on the 9101 on the left-hand side, and the appropriate files available on the PC on the right-hand side. Files on the PC have a file extension and can be stored on any drive and in any directory; there are no directories available on the 9101.


NOTE

File names on the 9101 only carry 11 characters. When copying a file from the PC to the 9101 that has more than 11 characters, the file name will be truncated. Only trace files with the extension *.9tr can be transferred to the 9101.

Copying configuration files from the 9101 to the PC

Files can be copied in both directions.

- 1 Select a PC directory where the file shall be stored or from which it shall be copied.
- 2 Select one or several files for copying, either on the PC or on the 9101.
- 3 Press **< copy** to transfer the files from the PC to the 9101.
or
Press **copy >** to transfer files to the PC.
If a file on one side has been selected for transfer and a file with the same name already exists on the other, the 9100 Data Exchange Software will display a pop-up box with the file name in question in the header bar, and offer several possibilities:
 - Click on **Yes** if you want to overwrite the file in question.
 - Click on **No** to cancel transmission of the file in question.
 - Click on **Yes to All** to copy all files, irrespective of duplicate file names.
 - Click on **No to All** to prevent overwriting of all files with duplicate file names.
 - Click on **Rename** to enter a new file name applying to that file when transferred.

- 4 Click on **Cancel** to cancel transmission of all files, no matter whether file names already exist on the receiving side or not.

Deleting files

- 1 To delete a file either on the 9101 or on the PC, select (highlight) the file name first. Several files may be selected concurrently by holding the **Shift** or **Ctrl** key pressed while selecting individual files.
- 2 Click on the Delete button above the files marked for deletion. A box appears asking, "Are you sure to delete the selected items?"
- 3 Click on **Yes** to confirm deletion.
The selected files are removed.

Programming Examples

9

This chapter provides examples how to use the SCPI commands to set up and control the 9101 Handheld Spectrum Analyzer.

- [“Overview” on page 186](#)
- [“Command examples” on page 186](#)
- [“Application examples” on page 194](#)

Overview

This chapter describes how to control the 9101 from a personal computer via a serial or LAN connection. It explains the basic commands for the 9101 Handheld Spectrum Analyzer and describes a few typical applications together with the SCPI command sequence.

This documents does not show every command possible. It is assumed that the user has some basic knowledge about remote control and also some experience in the use of a spectrum analyzer.

Command examples

Introduction

The whole command set can be divided into three categories: settings, measurements and others. Each category is described in a separate section.

The word `<val>` stands for a numerical value.

The word `<enum>` is a placeholder for a string.

Prerequisites

Over serial interface

The 9101 must be powered on. A serial cable (null modem cable with crossed lines) must connect the 9101 with the PC. The interface settings should be set to 57600 bps, 8 bits per character, no parity, 1 stop bit.

Over LAN interface

The 9101 must be powered on. A crosspatch LAN cable must connect the 9101 with the PC, or a normal LAN cable must connect the 9101 to a local area network. The 9101 must be programmed with its own IP address.

Settings

Please note that the 9101 always tries to execute the commands. However, under some circumstances, the 9101 must adjust or change other settings. If this happens, please check all previous settings and try to resolve this conflict.

Center frequency

`SENSe:FREQuency:CENTER <val>`

Sets the center frequency in Hz.

Examples:

Long format:

SENSE:FREQUENCY:CENTER 96500000
Center frequency set to 96.5 MHz

Short format:

SENS:FREQ:CENT 96.5E06
Center programmed to 96.5 MHz

Span SENSE:FREQuency:SPAN <val> Sets the span (dimension Hz)

Examples:

Long format:

SENSE:FREQUENCY:SPAN 20000000
Span programmed to 20 MHz

Short format:

SENS:FREQ:SPAN 20E06
Span programmed to 20 MHz

SENS:FREQ:SPAN:FULL
Full span programmed

SENS:FREQ:SPAN 0
Zero span activated

Resolution bandwidth SENSE:BANDwidth:RESolution <val>
Sets the resolution bandwidth (dim. Hz)

Valid values for <val>: 10 kHz, 30 kHz, 100 kHz, 300 kHz or 1 MHz.

Examples:

Long format:

SENSE:BANDWIDTH:RESOLUTION 30000
Resolution set to 30 kHz

Short format:

SENS:BAND:RES 30E03
Resolution set to 30 kHz

SENS:BAND:RES:AUTO ON
Automatic selection active

Video bandwidth SENSE:BANDwidth:VIDEO <val>
Sets the video bandwidth (dim. Hz)

Valid values for <val>: 100, 300 Hz, 1, 3, 10, 30, 100, 300 kHz or 1 MHz.

Examples:

Long format:

SENSE:BANDWIDTH:VIDEO 300000
Video set to 300 kHz

Short format:

SENS:BAND:VID 10E03
Video set to 10 kHz

SENS:BAND:VID:AUTO ON
Automatic selection active

Sweep time SENSE:SWEep:TIME <val> Sets the sweep time (dimension ms)
Valid values for <val>: 1, 2, 5, 10, 20, 50, 100, 200 or 500 ms; 1, 2, 5, 10 or 20 s.

Examples:

Long format:

SENSE:SWEEP:TIME 200

Sweep time set to 200 ms

Short format:

SENS:SWE:TIME 10

Sweep time set to 10 ms

SENS:SWE:TIME:AUTO ON

Automatic selection active

Reference level SENSE:RFLevel <val> Defines the reference level (in dBm)

Examples:

Long format:

SENSE:RFLEVEL -30.0

Reference level set to -30.0 dBm

Short format

SENS:RFL 10

Reference level set to +10 dBm

Scale DISPLAY:TRACe:Y <val> Defines scale per div. (in dB)

Examples:

Long format:

DISPLAY:TRACE:Y 10

Scale set to 10 dB per division

Short format:

DISPL:TRAC:Y 20

Scale set to 20 dB per div.

Input attenuation INPUT:ATTenuation <val> Sets the input attenuation (in dB)

Valid input attenuation values: 0, 10, 20, 30, 40 or 50 dB.

WARNING

Be careful with 0 dB. This value may damage the unit if the actual power is too high.

Examples:

Long format:

INPUT:ATTENUATION 10

10 dB attenuation

Short format:

INP:ATT 20

20 dB attenuation

Detector	SENSe:DETector:FUNCTION <enum>	Sets the behavior of the detector
Valid entries for <val>: POSNeg, SAMPlE, POSitive or NEGative.		
Examples:		
Long format: SENSe:DETECTOR:FUNCTION POSITIVE		
		Positive sampling
Short format: SENS:DET:FUNC NEG		
		Negative sampling
Trace	SENSe:TRACe:<x> <enum>	Sets the trace behavior for trace A or B
<x> is the trace (A or B)		
Valid entries for <enum> are: ACTual, MAXHold, MINHold, HOLD, AVG or OFF.		
Examples:		
Long format: SENSe:TRACE:A ACTUAL		
		Normal trace for A
Short format: SENS:TRAC:B AVG		
		Average trace for B
Marker	CALCulate:MARKer:<x>:X <val>	Sets the marker frequency (in Hz)
<x> is the trace (A to D)		
Examples:		
Long format: CALCULATE:MARKER:B:X 98500000		
		Marker B set to 98.5 MHz
Short format: CALC:MARK:A:X 1.2E09		
		Marker A set to 1.2 GHz
CALC:MARK:AOFF		
		All markers disabled
CALC:MARK:C:OFF		
		Only marker C disabled
CALC:MARK:MAXP		
		Selected marker set to MaxPeak
CALC:MARK:NPE		
		Selected marker set to NextPeak

Measurements

Trace SENSE:TRACe:<x>:FETCH? <enum>
Reads the trace data in a definable format

<x> is the trace (A or B)

Valid entries for <enum>: ALL, MIN, MAX, FREQ, FMIN or FMAX.

Examples:

Long format:

SENSE:TRACE:A:FETCH? ALL All measured data requested

Short format:

SENS:TRAC:B:FETCH? MAX Trace B (only MAX) requested

Format examples:

ALL: <min level>, <max level>, <freq>, <min level>, ...

MAX: <max level>, <max level>, ...

MIN: <min level>, <min level>, ...

FREQ: <freq>, <freq>, ...

FMAX: <max level>, <freq>, <max level>, <freq>, <max level>, ...

FMIN: <min level>, <freq>, <min level>, <freq>, <min level>, ...

NOTE

One trace contains 500 samples.

Sweep SENSE:SWEep:STATE <enum> Controls the sweep

Valid entries for <enum>: CONTinuous, SINGLE or HOLD

Examples:

Long format:

SENSE:SWEET:STATE SINGLE One sweep performed

Short format:

SENS:SWE:STAT CONT Repetitive sweeps started

Max Peak CALCulate:MARKer:MAXPeak Sets the marker to the maximum peak

Examples:

Long format:

CALCULATE : MARKER : MAXPEAK

Marker set to max. peak

Short format:

CALC:MARK:MAXP

Marker set to max. peak

NOTE

A marker must be activated first using the following command:

CALC:MARKer:<x>[:STATE] {NORMAl|DELTa|NOISE}.

Next Peak CALCulate:MARKer:NPEak Sets the marker to the next highest peak

Examples:

Long format:

CALCULATE : MARKER : NPEAK

Marker set to the next peak

Short format:

CALC:MARK:NPE

Marker set to the next peak

NOTE

A marker must be activated first using the following command:

CALC:MARKer:<x>[:STATE] {NORMAl|DELTa|NOISE}.

Marker level CALCulate:MARKer:<x>:Y? Reads the level at the actual marker position

<x> selects the trace (A to D)

Examples:

Long format:

CALCULATE : MARKER : B : Y?

Marker B level requested

Short format:

CALC:MARK:A:Y?

Marker A level requested

Marker frequency CALCulate:MARKer:<x>:X? Reads the actual marker frequency

<x> selects the trace (A to D)

Examples:

Long format:

CALCULATE : MARKER : B : X?

Marker B frequency requested

Short format:
CALC:MARK:A:X?
Marker A frequency requested

Others

Identity *IDN? Reads serial number of the instrument

Format returned: "<Manufacturer>, <Model>, <Serial number>, <Software version>"

Manufacturer: willtek

Model: 9101

Serial number: (seven digits)

Software version: 2.00 (for example)

Reset *RST Resets the unit

Example:

*RST Unit set to idle state

Error queue SYST:ERR? Queries the error queue

Format returned: <Error number>, "<Error description>"

If no error is present, 0,"No Error" is returned.

NOTE

The error queue can hold up to 10 error messages. Read always until the NO ERROR is given back.

Echo SYST:COMM:ECHO <enum> Enables/disables echo function

Range: ON or OFF.

Example:

SYST:COMM:ECHO ON Echo feature activated

NOTE

We recommend to always activate the echo. It gives back "OK" after a command was successfully executed or in case of errors "ERR".

The additional advantage of this is to create a kind of handshake mechanism.

Local mode SYST:COMM:LOCAL

Switches unit back to local mode

Example:

SYST:COMM:LOCAL

Remote session finished

Application examples

The application examples below use three subroutines which transmit a command (Output9100), read a result (Input9100) or send a command and read the acknowledgement (OutAck9100). These subroutines are not printed here but available from Willtek on request. The program examples are written in BASIC.

Signal monitoring

Task: Permanently monitor a signal and check, if it is still present. The signal frequency is 97.3 MHz and the signal strength is around -40 dBm.

```
OutAck9100 ("SENS:FREQ:CENT 97300000") ' set the center to the frequency
OutAck9100 ("SENS:FREQ:SPAN 2E06")      ' set span to 2 MHz

OutAck9100 ("SENS:REFL -30")             ' set a sensitive ref level
OutAck9100 ("INP:ATT 10")                ' set a low attenuation
OutAck9100 ("SENS:TRAC:A ACT")          ' activate an normal trace
OutAck9100 ("SENS:DET:FUNC POS")        ' use only positive samples

OutAck9100 ("CALC:MARK:AOFF")           ' switch all markers off
OutAck9100 ("CALC:MARK:A NORM")         ' activate marker A
SIG_FLAG = True

While SIG_FLAG = True
    OutAck9100 ("SENS:SWE:STAT SING")    ' do one measurement

    OutAck9100 ("CALC:MARK:A:X 97.3E06") ' set marker to the signal

    Output9100 ("CALC:MARK:A:Y?")        ' read the signal level
    Lvl = Val(Input9100())

    If Lvl < -45 Then SIG_FLAG = False   ' signal lost
Wend

Print "Signal disappeared!!!"
```

Signal search

Task: Search for transmitters within a frequency band. If a signal is present and higher than a level of -80 dBm, the frequency is printed.

```

OutAck9100 ("SENS:FREQ:SPAN 2000000")      ' set span to 2 MHz
OutAck9100 ("SENS:FREQ:CENT 936000000")' start with channel 0

OutAck9100 ("SENS:REFL -40")                  ' set a sensitive ref-level
OutAck9100 ("INP:ATT 0")                      ' remove any attenuation !!
OutAck9100 ("SENS:TRAC:A MAXH")                ' activate a max hold trace
OutAck9100 ("SENS:DET:FUNC POS")                ' use only positive samples

OutAck9100 ("CALC:MARK:AOFF")                  ' switch all markers off

channel = 1
For I = 9360 To 9594 Step 18          ' scan the gsm band in small portions
  Msg$ = "SENS:FREQ:CENT" & Str$(I) & "00000"
  OutAck9100 (Msg$)                      ' set frequency

  For J = 0 To 4
    OutAck9100 ("SENS:SWE:STAT SING")  ' do the measurements 5 times
  Next J

  Output9100 ("SENS:TRAC:A:FETC? MAX")
  MXdata$ = Input9100()                  ' read trace data

  For J = 0 To 499                      ' isolate the data into an array
    P = InStr(MXdata$, ",") ' search for the COMMA between two values
    Yfeld(J) = Val(Mid$(MXdata$, 1, P))
    MXdata$ = Right$(MXdata$, Len(MXdata$) - P)
    ' remove the actual value
  Next J

  For J = 45 To 445 Step 50
    P = -120
    For K = 0 To 8                      ' do a maximum search
      If Yfeld(J + K) > P Then
        P = Yfeld(J + K)                ' store the new maximum
      End If
    Next K

    If P > -80 And channel < 125 Then    ' blocked channel found
      Print "Channel " & Str$(channel) & " = " & Str$(P) & " dBm."
    End If
    channel = channel + 1
  Next J
Next I

```


Index of SCPI Commands

A

*CAL	103
*CLS	103
*ESE	105
*ESR	105
*IDN	103
*OPC	104
*OPT	103
*RST	104
*SRE	106
*STB	106
*WAI	104
:CALCulate:{A B C D E F}:MARKer:FSTep	148
:CALCulate:LIMit:FBEp	151
:CALCulate:LIMit:FCOunt	150
:CALCulate:LIMit:FCOunt:COUNt?	151
:CALCulate:LIMit:FHOLd	151
:CALCulate:LIMit:SIMPle	151
:CALCulate:LIMit:SIMPle:LOWer	152
:CALCulate:LIMit:SIMPle:UPPer	152
:CALCulate:LIMit[:STATe]	150
:CALCulate:MARKer:{A B C D E F}:DTF[:STATe]	146
:CALCulate:MARKer:{A B C D E F}:TSELect	148
:CALCulate:MARKer:{A B C D E F}:X:DISTance	148
:CALCulate:MARKer:{A B C D E F}:X:TIME	147
:CALCulate:MARKer:{A B C D E F}:X[:FREQuency]	147
:CALCulate:MARKer:{A B C D E F}:Y?	147
:CALCulate:MARKer:{A B C D E F}[:STATe]	146
:CALCulate:MARKer:AOFF	146
:CALCulate:MARKer:FCOunt:RESolution	150
:CALCulate:MARKer:FCOunt?	150
:CALCulate:MARKer:MAXPeak	149
:CALCulate:MARKer:MCENTER	149
:CALCulate:MARKer:MREFlevel	149
:CALCulate:MARKer:NPEak	149

:CALCulate:MEASure:ACPR	152
:CALCulate:MEASure:CPower	153
:CALCulate:MEASure:OBW	152
:DISPlay:BACKlight:EXTern	144
:DISPlay:BACKlight[:BATTery]	144
:DISPlay:BEEP	144
:DISPlay:COLOR:GRATicule	145
:DISPlay:COLOR:LIMits	145
:DISPlay:COLOR:TRACe:[A B]	145
:DISPlay:COLOR:TRACe:OFFSet	145
:DISPlay:TRACe:Y[:SCALE]:DTF:RFACtor	144
:DISPlay:TRACe:Y[:SCALE]:LINEar:VOLT	142
:DISPlay:TRACe:Y[:SCALE]:LINEar:WATT	142
:DISPlay:TRACe:Y[:SCALE]:RFLection:RFACtor	143
:DISPlay:TRACe:Y[:SCALE]:RFLection:RPOWer	143
:DISPlay:TRACe:Y[:SCALE]:RFLection:VSWR	143
:DISPlay:TRACe:Y[:SCALE]:[:LOGarithmic]	142
:FORMAT:ADELimiter	153
:FORMAT:RESolution	153
:HCOPy[:IMMEDIATE]	102
:INPUT:AFACtor	129
:INPUT:ATTenuation	128
:INPUT:ATTenuation:AUTO	129
:INPUT:CFACtor	130
:INPUT:EDEvice	129
:INPUT:IMPedance	129
:INSTrument:SELect	141
:MMEMory:DElete:AFACtor	140
:MMEMory:DElete:AFACtor:ALL	141
:MMEMory:DElete:CFACtor	141
:MMEMory:DElete:CFACtor:ALL	141
:MMEMory:DElete:CHANnel	139
:MMEMory:DElete:CHANnel:ALL	139
:MMEMory:DElete:CTYPe	140
:MMEMory:DElete:CTYPe:ALL	140
:MMEMory:DElete:EDEvice	139
:MMEMory:DElete:EDEvice:ALL	140
:MMEMory:DElete:LIMit	138
:MMEMory:DElete:LIMit:ALL	139
:MMEMory:DElete:STATe	137
:MMEMory:DElete:STATe:ALL	138
:MMEMory:DElete:TRACe	138
:MMEMory:DElete:TRACe:ALL	138
:MMEMory:LOAD:AFACtor	137
:MMEMory:LOAD:CFACtor	137
:MMEMory:LOAD:CHANnel	136
:MMEMory:LOAD:CTYPe	137
:MMEMory:LOAD:EDEvice	137
:MMEMory:LOAD:LIMit	136
:MMEMory:LOAD:STATe	136
:MMEMory:LOAD:TRACe	136
:MMEMory:STORe:AFACtor	133
:MMEMory:STORe:CFACtor	133
:MMEMory:STORe:CHANnel	131

:MMEMory:STORe:CTYPe	132
:MMEMory:STORe:EDEvice	132
:MMEMory:STORe:LIMit	131
:MMEMory:STORe:STATe	130
:MMEMory:STORe:TRACe	130
:MMEMory[:LOAD]:FILElist:AFACtor?	135
:MMEMory[:LOAD]:FILElist:CFACtor?	135
:MMEMory[:LOAD]:FILElist:CHANnel?	134
:MMEMory[:LOAD]:FILElist:CTYPe?	135
:MMEMory[:LOAD]:FILElist:EDEvice?	134
:MMEMory[:LOAD]:FILElist:LIMit?	134
:MMEMory[:LOAD]:FILElist:STATe?	134
:MMEMory[:LOAD]:FILElist[:TRACe]?	133
:REBoot	102
:SENSe:BANDwidth:RESolution	114
:SENSe:BANDwidth:RESolution:AUTO	115
:SENSe:BANDwidth:VIDeo	115
:SENSe:BANDwidth:VIDeo:AUTO	115
:SENSe:CPOWER:CHANnel	118
:SENSe:CPOWER:MEASure	119
:SENSe:CPOWER:OBW	119
:SENSe:CPOWER:SPAN	118
:SENSe:DEMod:DEMod	121
:SENSe:DEMod:DURation	122
:SENSe:DEMod:VOLUME	121
:SENSe:DEMod[:MODulation]	121
:SENSe:DETector:FUNCTION	122
:SENSe:FREQuency:CENTer	115
:SENSe:FREQuency:FSTep	117
:SENSe:FREQuency:FSTep:AUTO	118
:SENSe:FREQuency:MODE	117
:SENSe:FREQuency:SPAN	116
:SENSe:FREQuency:SPAN:FULL	116
:SENSe:FREQuency:STARt	116
:SENSe:FREQuency:STOP	117
:SENSe:FREQuency:STOP:MAX	117
:SENSe:MEASure	127
:SENSe:MEASure:ADJSettings	128
:SENSe:MEASure:CHANnel:SPACing	128
:SENSe:MEASure:CHANnel:WIDTH	127
:SENSe:MEASure:OBW	127
:SENSe:REFLevel	126
:SENSe:REFLevel:UNIT	126
:SENSe:STATe	127
:SENSe:SWEep:STATe	120
:SENSe:SWEep:TIME	119
:SENSe:SWEep:TIME:AUTO	119
:SENSe:TRACe:A:FETCh?	123
:SENSe:TRACe:A[:STATe]	122
:SENSe:TRACe:AVGFactor	124
:SENSe:TRACe:B:FETCh?	124
:SENSe:TRACe:B[:STATe]	123
:SENSe:TRACe:CLEar	124
:SENSe:TRACe:COPY	124

:SENSe:TRACe:DATa:LIMit	125
:SENSe:TRACe:DATa?	125
:SENSe:TRACe:MATH	125
:SENSe:TRACe:MATH:[A B]	125
:SENSe:TRACe:MATH:OFFSet	126
:SENSe:TRIGger	120
:SENSe:TRIGger:EDGE	121
:SENSe:TRIGger:LEVel	120
:SERVice:BATTery	154
:SERVice:BATTery:SERialnumber?	155
:SERVice:BOOTversion:DATE?	154
:SERVice:BOOTversion?	154
:SERVice:CHECK:LAST	155
:SERVice:CHECK:NEXT	155
:SERVice:DEVice:CALibration:NUMBer?	156
:SERVice:DEVice:TEXT?	156
:SERVice:DEVice:TYPe?	156
:SERVice:EDEvice:CALibration:DATE?	157
:SERVice:EDEvice:SERialnumber?	156
:SERVice:EDEvice:TEXT?	157
:SERVice:EDEvice:TYPe?	157
:SERVice:POWerline?	155
:SYSTem:COMMUnicate:ECHO	109
:SYSTem:COMMUnicate:ETHernet:IPADDress	109
:SYSTem:COMMUnicate:ETHernet:PORT	110
:SYSTem:COMMUnicate:ETHernet:SUBNetmask	110
:SYSTem:COMMUnicate:ETHernet:TERminator	110
:SYSTem:COMMUnicate:ETHernet:TNAME	110
:SYSTem:COMMUnicate:ETHernet?	109
:SYSTem:COMMUnicate:LOCal	108
:SYSTem:COMMUnicate:SER:BAUDrate	111
:SYSTem:COMMUnicate:SER:TERminator	111
:SYSTem:DATE	108
:SYSTem:DNAME	112
:SYSTem:ERRor:CODE:ALL?	112
:SYSTem:ERRor:CODE[:NEXT]?	112
:SYSTem:ERRor:COUNT?	111
:SYSTem:ERRor[:NEXT]?	111
:SYSTem:OPTions	113
:SYSTem:PRINTER:BAUDrate	114
:SYSTem:PRINTER:TYPe	114
:SYSTem:SCReendump:COLor?	113
:SYSTem:SCReendump:LINE?	113
:SYSTem:SCReendump:REMote	113
:SYSTem:TIME	108

Predefined settings

B

This appendix provides an overview on settings and parameters predefined on the 9101 as well as in the 9100 Data Exchange Software for your convenience. The topics discussed in this appendix are as follows:

- ["Predefined measurement settings" on page 202](#)
- ["Predefined channel power communication systems" on page 203](#)
- ["Predefined cable types" on page 206](#)

Predefined measurement settings

The 9101 provides the capability of storing all parameters for a particular measurement for reuse when repeating the measurement under the same conditions. In the 9100 Data Exchange Software delivered with your instrument a number of predefined settings for common measurements are available. For details on working with these settings refer to "["Working with settings" on page 180](#).

The following table provides an overview on the settings available within the 9100 Data Exchange Software. The names for the predefined settings files have prefixes assigned to them indicating the measurement modes used for performing the individual measurements:

- SP for spectrum analysis mode
- CH for channel power mode
- SG for signal generator mode
- TR for transmission mode
- RFL for reflection mode
- DTF for distance to fault mode
- CL for cable loss mode
- EMF for EMF (EMI) mode

Table 1 Predefined measurement settings

Name	Meaning	Frequency range
SP-UKW	Ultra short wave	87.5 to 108 MHz
SP-DAB I	Digital audio broadcast band I	223 to 230 MHz
SP-DAB II	Digital audio broadcast band II	1452 to 1479.5 MHz
SP-VHF I	Very high frequency TV band I	47 to 68 MHz
SP-VHF III	Very high frequency TV band III	174 to 230 MHz
SP-UHF IV	Ultra high frequency TV band IV	470 to 606 MHz
SP-UHF V	Ultra high frequency TV band V	606 to 862 MHz
SP-LNB	SAT-ZF	950 to 2050 MHz
RFL-GSM900	GSM 900 frequency range	875 to 965 MHz
RFL-GSM1800	GSM 1800 frequency range	1700 to 1890 MHz
RFL-UMTS	UMTS band I frequency range	1890 to 2200 MHz

Predefined channel power communication systems

Measurements in channel power mode imply that a communication system with predefined channel numbers and associated frequencies has been defined. The 9101 comes with a few systems preinstalled. More systems are available for download to the 9101 in the 9100 Data Exchange Software. The following two sections provide you with an overview on the communication systems preinstalled on your 9101 as well as on the systems available in the 9100 Data Exchange Software.

Preinstalled systems on the 9101

The following table lists all communication systems preinstalled as a default on your 9101. For details on working with the preinstalled systems refer to "[Working with communication systems and frequency settings](#)" on page 77.

Table 2 Default preinstalled channel power systems

System name	Meaning	Frequency range	Channel numbers (n)	Center frequencies (f_c)	Channel width
DECT		1880 to 1900 MHz	0 to 9	$f_c = 1897.344 - n*1.728$	1728 kHz
PGSM900-DL	Primary GSM Downlink	935 to 960 MHz	1 to 124	$f_c = 935 + 0.2*n$	200 kHz
RGSM900-DL	Railways GSM Downlink	921 to 960 MHz	955 to 1023	$f_c = 935 + 0.2*(n-1024)$	200 kHz
PCN1800-DL	GSM 1800 Downlink	1805 to 1880 MHz	512 to 885	$f_c = 1805.2 + 0.2*(n-512)$	200 kHz
PCS1900-DL	GSM 1900 Downlink	1930 to 1990 MHz	512 to 810	$f_c = 1930.2 + 0.2*(n-512)$	200 kHz
WCDMA-DL	UTRA-FDD Downlink	2110 to 2170 MHz	10562 to 10838	$f_c = n / 5$	5 MHz
WCDMA-UL	UTRA-FDD Uplink	1920 to 1980 MHz	9612 to 9888	$f_c = n / 5$	5 MHz
WLAN	IEEE 802.11b,g	2400 to 2484 MHz	1 to 13	$f_c = 2412 + (n-1)*5$	22 MHz

Predefined systems in the 9100 Data Exchange Software

The following table lists all further communication systems available in the 9100 Data Exchange Software for download to the 9101. For details on using these systems refer to ["Managing communication systems for channel power measurements" on page 179](#).

Table 3 9100 Data Exchange Software channel power systems

System name	Meaning	Frequency range	Channel numbers (n)	Center frequencies (f _c)	Channel width
GSM450-UL	GSM 450 Uplink	450.4 to 457.6 MHz	259 to 293	$f_c = 450.6 + 0.2*(n - 259)$	200 kHz
GSM450-DL	GSM 450 Downlink	460.4 to 467.6 MHz	259 to 293	$f_c = 460.6 + 0.2*(n - 259)$	200 kHz
GSM480-UL	GSM 480 Uplink	478.8 to 468 MHz	306 to 340	$f_c = 479 + 0.2*(n - 306)$	200 kHz
GSM480-DL	GSM 480 Downlink	488.8 to 496 MHz	306 to 340	$f_c = 489 + 0.2*(n - 306)$	200 kHz
GSM850-UL	GSM 850 Uplink	824 to 849 MHz	128 to 251	$f_c = 824.2 + 0.2*(n - 128)$	200 kHz
GSM850-DL	GSM 850 Downlink	869 to 894 MHz	128 to 251	$f_c = 869.2 + 0.2*(n - 128)$	200 kHz
EGSM900-UL	Extended GSM Uplink	880 to 915 MHz	975 to 1023	$f_c = 890 + 0.2*(n - 1024)$	200 kHz
EGSM900-DL	Extended GSM Downlink	925 to 960 MHz	975 to 1023	$f_c = 935 + 0.2*(n - 1024)$	200 kHz
PGSM900-UL	Primary GSM Uplink	890 to 915 MHz	1 to 124	$f_c = 890 + 0.2*n$	200 kHz
RGSM900-UL	Railways GSM Uplink	876 to 915 MHz	955 to 1023	$f_c = 890 + 0.2*(n - 1024)$	200 kHz
PCN1800-UL	GSM 1800 Uplink	1710 to 1785 MHz	512 to 885	$f_c = 1710.2 + 0.2*(n - 512)$	200 kHz
PCS1900-UL	GSM 1900 Uplink	1850 to 1910 MHz	512 to 810	$f_c = 1850.2 + 0.2*(n - 512)$	200 kHz
BLUETOOTH	USA/Europe	2402 to 2480 MHz	0 to 78	$f_c = 2402 + n$	1 MHz
USCELL-UL	U.S. cellular Uplink	824 to 849 MHz	1 to 799	$f_c = 825 + 0.03*n$	1.25 MHz
USCELL-DL	U.S. cellular Downlink	869 to 894 MHz	1 to 799	$f_c = 870 + 0.03*n$	1.25 MHz
USPCS-UL	North America PCS Uplink	1850 to 1910 MHz	0 to 1199	$f_c = 1850 + 0.05*n$	1.25 MHz

Table 3 9100 Data Exchange Software channel power systems (Continued)

System name	Meaning	Frequency range	Channel numbers (n)	Center frequencies (f_c)	Channel width
USPCS-DL	North America PCS Downlink	1930 to 1990 MHz	0 to 1199	$f_c = 1930 + 0.05*n$	1.25 MHz
TACS-UL	TACS Uplink	872 to 915 MHz	0 to 1000	$f_c = 889.9875 + 0.025*n$	1.25 MHz
TACS-DL	TACS Downlink	917 to 960 MHz	0 to 1000	$f_c = 934.9875 + 0.025*n$	1.25 MHz
JTACS-UL	JTACS Uplink	887 to 925 MHz	1 to 799	$f_c = 915 + 0.0125*n$	1.25 MHz
JTAGS-DL	JTACS Downlink	832 to 870 MHz	1 to 799	$f_c = 860 + 0.0125*n$	1.25 MHz
KORPCS-UL	Korean PCS Uplink	1850 to 1780 MHz	0 to 599	$f_c = 1750 + 0.05*n$	1.25 MHz
KORPCS-DL	Korean PCS Downlink	1840 to 1870 MHz	0 to 599	$f_c = 1840 + 0.05*n$	1.25 MHz
NMT450-UL	NMT-450 Uplink	411 to 484 MHz	1 to 300	$f_c = 450 + 0.025*(n - 1)$	1.25 MHz
NMT450-DL	NMT-450 Downlink	421 to 494 MHz	1 to 300	$f_c = 460 + 0.025*(n - 1)$	1.25 MHz
IMT2000-UL	IMT-2000 Uplink	1920 to 1980 MHz	0 to 1199	$f_c = 1920 + 0.05*n$	1.25 MHz
IMT2000-DL	IMT-2000 Downlink	2110 to 2170 MHz	0 to 1199	$f_c = 2110 + 0.05*n$	1.25 MHz
CDMA700-UL	CDMA 700 MHz Uplink	776 to 794 MHz	0 to 359	$f_c = 776 + 0.05*n$	1.25 MHz
CDMA700-DL	CDMA 700 MHz Downlink	746 to 764 MHz	0 to 359	$f_c = 746 + 0.05*n$	1.25 MHz
CDMA1800-UL	CDMA 1800 MHz Uplink	1710 to 1785 MHz	0 to 1499	$f_c = 1710 + 0.05*n$	1.25 MHz
CDMA1800-DL	CDMA 1800 MHz Downlink	1805 to 1880 MHz	0 to 1499	$f_c = 1805 + 0.05*n$	1.25 MHz
CDMA900-UL	CDMA 900 MHz Uplink	880 to 915 MHz	0 to 699	$f_c = 880 + 0.05*n$	1.25 MHz
CDMA900-DL	CDMA 900 MHz Downlink	925 to 960 MHz	0 to 699	$f_c = 925 + 0.05*n$	1.25 MHz

Predefined cable types

For DTF measurements in the distance to fault measurement mode Willtek provides predefined cable types for most known coaxial cables. These cable types are available in the 9100 Data Exchange Software. You can upload the cable types you use frequently to the 9101.

The following table provides an overview on all predefined cable types implemented in the 9100 Data Exchange Software.

Table 4 9100 Data Exchange Software cable types

Cable type	Description	Velocity (Vf %)	Attn. (dB/100m)	Dielec.
ANAVA5-50	AVA5-50 7/8"	91.00	5.530	1.21
ANAVA7-50	AVA7-50 1 5/8"	92.00	3.360	1.18
ANEFX2-50	EFX2-50	85.00	17.800	1.38
ANFSJ1-50A	FSJ1-50A	84.00	28.500	1.42
ANFSJ2-50	FSJ2-50	83.00	19.600	1.45
ANFSJ4-50B	FSJ4-50B	81.00	17.600	1.52
ANHJ12-50	HJ12-50	93.10	2.890	1.15
ANHJ45-50	HJ4.5-50	92.00	7.860	1.18
ANHJ4-50	HJ4-50	91.40	13.700	1.20
ANHJ5-50	HJ5-50	91.60	6.260	1.19
ANHJ7-50A	HJ7-50A	92.10	3.420	1.18
ANHL4RP-50	HL4RP-50	88.00	12.200	1.29
ANLDF12-50	LDF12-50	88.00	3.260	1.29
ANLDF1-50	LDF1-50	86.00	20.000	1.35
ANLDF2-50	LDF2-50	88.00	17.000	1.29
ANLDF45-50A	LDF4.5-50A	89.00	8.020	1.26
ANLDF4-50A	LDF4-50A	88.00	10.700	1.29
ANLDF5-50A	LDF5-50A	89.00	6.110	1.26
ANLDF5-50B	LDF5-50B	91.00	6.100	1.21
ANLDF6-50	LDF6-50	89.00	4.430	1.26
ANLDF7-50A	LDF7-50A	88.00	3.710	1.29
ANVXL5-50	VXL5-50	88.00	6.590	1.29
ANVXL5-5078	VXL5-50 7/8"	88.00	6.590	1.29
ANVXL6-50	VXL6-50	88.00	4.830	1.29
ANVXL6-50	VXL6-50 1 1/4"	88.00	4.830	1.29

Table 4 9100 Data Exchange Software cable types (Continued)

Cable type	Description	Velocity (Vf %)	Attn. (dB/100m)	Dielec.
ANVXL7-50	VXL7-50	88.00	3.710	1.29
BERG10	RG10	65.90	26.201	2.30
BERG10A	RG10A	65.90	26.201	2.30
BERG142	RG142	65.90	44.300	2.30
BERG17	RG17	65.90	18.000	2.30
BERG174	RG174	65.90	98.400	2.30
BERG178B	RG178B	65.90	150.900	2.30
BERG17A	RG17A	65.90	18.000	2.30
BERG188	RG188	65.90	101.700	2.30
BERG213	RG213	65.90	29.200	2.30
BERG214	RG214	65.90	29.200	2.30
BERG223	RG223	65.90	53.500	2.30
BERG55	RG55	65.90	54.100	2.30
BERG55A	RG55A	65.90	54.100	2.30
BERG55B	RG55B	65.90	54.100	2.30
BERG58	RG58	65.90	55.800	2.30
BERG58A	RG58A	66.00	55.900	2.30
BERG58B	RG58B	65.90	78.700	2.30
BERG58C	RG58C	65.90	78.700	2.30
BERG8	RG8	65.90	26.201	2.30
BERG8A	RG8A	65.90	26.201	2.30
BERG9	RG9	65.90	28.900	2.30
BERG9A	RG9A	65.90	28.900	2.30
CSCR501070	CR50 1070PE	88.00	5.510	1.29
CSCR501873	CR50 1873PE	88.00	3.440	1.29
CSCR50540	CR50 540PE	88.00	10.300	1.29
EUEC12-50	EC12-50 2-1/4	88.00	3.370	1.29
EUEC1-50	EC1-50 1/4	82.00	20.980	1.49
EUEC1-50-HF	EC1-50-HF 1/4	83.00	26.890	1.45
EUEC2-50	EC2-50 3/8	88.00	15.100	1.29
EUEC45-50	EC4.5-50 5/8	88.00	8.150	1.29
EUEC4-50	EC4-50 1/2	88.00	10.880	1.29

Table 4 9100 Data Exchange Software cable types (Continued)

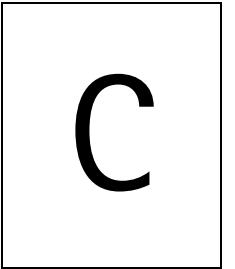
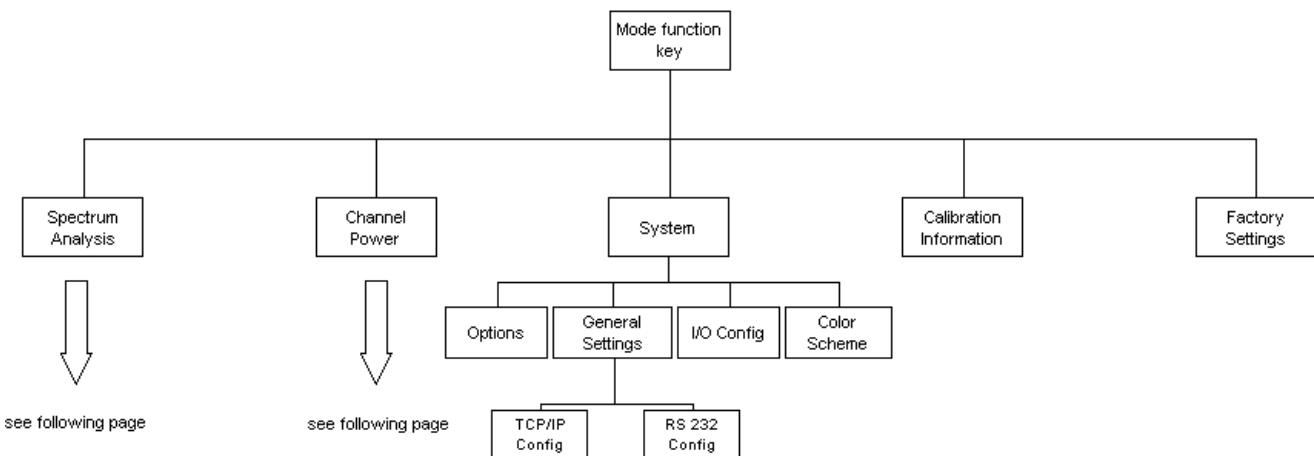
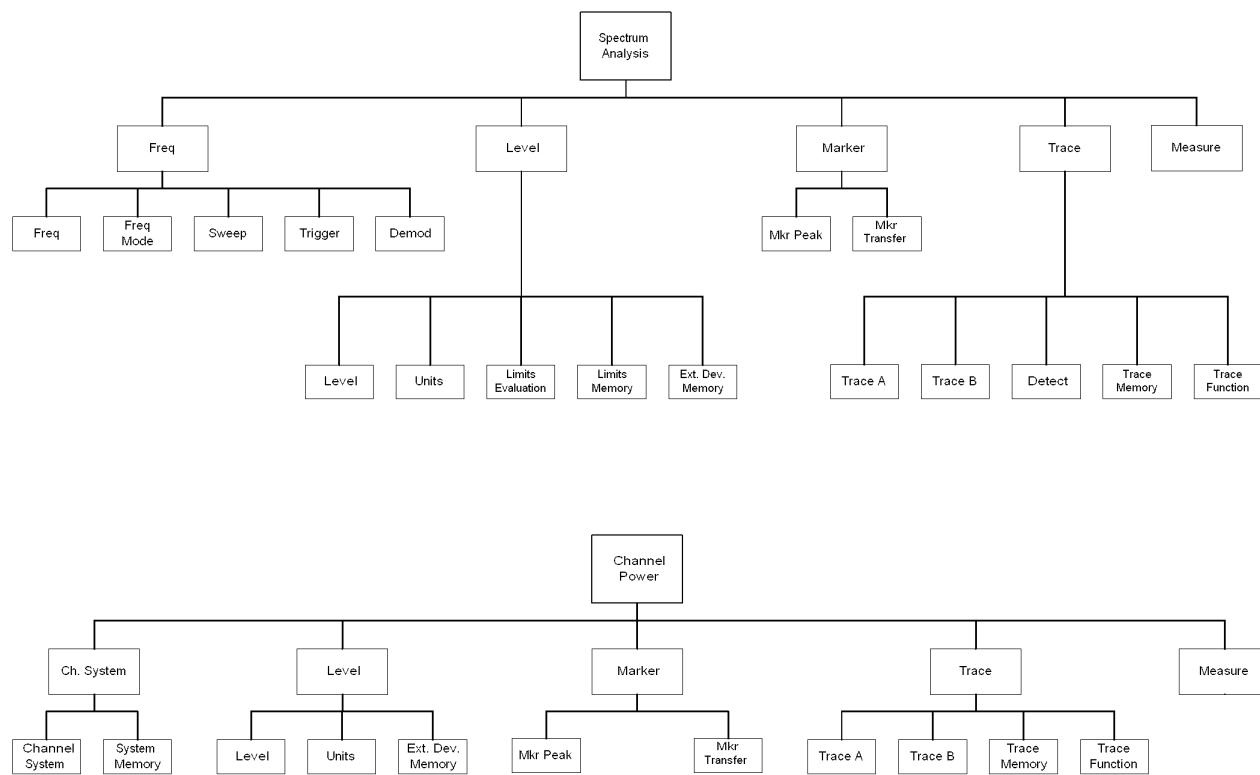

Cable type	Description	Velocity (Vf %)	Attn. (dB/100m)	Dielec.
EUEC4-50-HF	EC4-50-HF 1/2	82.00	16.080	1.49
EUEC5-50	EC5-50 7/8	88.00	6.100	1.29
EUEC6-50	EC6-50 1-1/4	88.00	4.510	1.29
EUEC7-50	EC7-50 1-5/8	88.00	3.810	1.29
NKRF114-50	RF 1 1/4"-50	88.00	4.290	1.29
NKRF158-50	RF 1 5/8"-50	88.00	3.630	1.29
NKRF12-50	RF 1/2"-50	88.00	10.700	1.29
NKRF214-50	RF 2 1/4"-50	88.00	3.220	1.29
NKRF38-50	RF 3/8"-50	86.00	16.200	1.35
NKRF58-50	RF 5/8"-50	88.00	7.460	1.29
NKRF78-50	RF 7/8"-50	88.00	5.850	1.29
NKRFE114-50	RFE 1 1/4"-50	88.00	4.440	1.29
NKRFE158-50	RFE 1 5/8"-50	88.00	3.680	1.29
NKRFE78-50	RFE 7/8"-50	84.00	6.290	1.42
NKRFF12-50	RFF 1/2"-50	82.00	15.700	1.49
NKRFF14-50	RFF 1/4"-50	83.00	27.200	1.45
NKRFF38-50	RFF 3/8"-50	81.00	20.900	1.52
RFHCA118-50	HCA118-50	92.00	4.550	1.18
RFHCA12-50	HCA12-50	93.00	11.100	1.16
RFHCA158-50	HCA158-50	95.00	2.890	1.11
RFHCA214-50	HCA214-50	95.00	2.880	1.11
RFHCA300-50	HCA300-50	96.00	1.483	1.09
RFHCA318-50	HCA318-50	96.00	1.260	1.09
RFHCA38-50	HCA38-50	89.00	13.200	1.26
RFHCA418-50	HCA418-50	97.00	0.957	1.06
RFHCA58-50	HCA58-50	92.00	8.180	1.18
RFHCA78-50	HCA78-50	93.00	5.750	1.16
RFHF4-18	HF 4-1/8" Cu2Y	97.00	1.000	1.06
RFHF5	HF 5" Cu2Y	96.00	0.700	1.09
RFHF6-18	HF 6-1/8" Cu2Y	97.00	0.600	1.06
RFLCF12-50	LCF12-50	88.00	10.500	1.29
RFLCF14-50	LCF14-50	83.00	20.200	1.45

Table 4 9100 Data Exchange Software cable types (Continued)

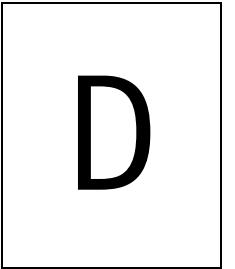
Cable type	Description	Velocity (Vf %)	Attn. (dB/100m)	Dielec.
RFLCF158-50	LCF158-50A	89.00	3.640	1.26
RFLCF214-50	LCF214-50A	88.00	3.260	1.29
RFLCF38-50	LCF38-50	88.00	16.500	1.29
RFLCF58-50	LCF58-50	88.00	8.260	1.29
RFLCF78-50A	LCF78-50A	89.00	5.820	1.26
RFLCFS114	LCFS114-50A	89.00	4.420	1.26
RFSCF114-50	SCF114-50A	89.00	4.720	1.26
RFSCF12-50	SCF12-50	82.00	16.400	1.49
RFSCF14-50	SCF14-50	82.00	28.500	1.49
RFSCF38-50	SCF38-50	82.00	20.600	1.49
RFSCF78-50A	SCF78-50A	88.00	6.160	1.29
TMLMR100A	LMR100A	66.00	115.463	2.30
TMLMR1200	LMR1200	88.00	6.532	1.29
TMLMR1700	LMR1700	89.00	4.931	1.26
TMLMR195	LMR195	80.00	55.443	1.56
TMLMR200	LMR200	83.00	49.249	1.45
TMLMR240	LMR240	84.00	37.684	1.42
TMLMR300	LMR300	85.00	30.325	1.38
TMLMR400	LMR400	85.00	19.646	1.38
TMLMR500	LMR500	86.00	15.876	1.35
TMLMR600	LMR600	87.00	12.789	1.32
TMLMR900	LMR900	87.00	8.645	1.32
310801	310801	82.10	11.500	1.48
311201	311201	82.00	18.000	1.49
311501	311501	80.00	23.000	1.56
311601	311601	80.00	26.200	1.56
311901	311901	80.00	37.700	1.56
352001	352001	80.00	37.700	1.56


Menu Structure


C

This appendix provides an overview of the menu structure of the 9101 Handheld Spectrum Analyzer.

Mode function key menus



Application menus

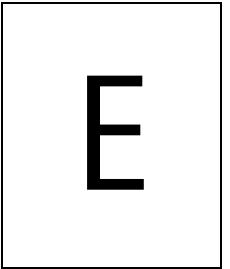
Software License

D

This chapter contains the license conditions for use of the 9101 Handheld Spectrum Analyzer and the 9100 Data Exchange Software.

End-user license agreement

All copyrights in and to the software product are owned by Willtek Communications or its licensors. The software is protected by copyright laws and international copyright treaties, as well as other intellectual property laws and treaties.


This end-user license agreement grants you the right to use the software contained in this product subject to the following restrictions. You may not:

- (i) use the software and/or any copy of the software in different computers concurrently, unless the software is an update that has been downloaded from the Internet at www.willtek.com;
- (ii) copy the software, except for archive purposes consistent with your standard archive procedures;
- (iii) transfer the software to a third party apart from the entire product;
- (iv) modify, decompile, disassemble, reverse engineer or otherwise attempt to derive the source code of the software;
- (v) export the software in contravention of applicable export laws and regulations of the country of purchase;
- (vi) use the software other than in connection with operation of the product.

The licensor's suppliers do not make or pass on to end users or any other third party, any express, implied or statutory warranty or representation on behalf of such suppliers, including but not limited to the implied warranties of noninfringement, title, merchantability or fitness for a particular purpose.

Willtek Communications shall not be held liable for any damages suffered or incurred by you or any other third party (including, but not limited to, general, special, consequential or incidental damages including damages for loss of business profits, business interruption, loss of business information and the like), arising out of or in connection with the delivery, use or performance of the software.

Warranty and Repair

E

This chapter describes the customer services available through Willtek. Topics discussed in this chapter include the following:

- ["Warranty information" on page 218](#)
- ["Equipment return instructions" on page 219](#)

Warranty information

Willtek warrants that all of its products conform to Willtek's published specifications and are free from defects in materials and workmanship for a period of one year from the date of delivery to the original buyer, when used under normal operating conditions and within the service conditions for which they were designed. This warranty is not transferable and does not apply to used or demonstration products.

In case of a warranty claim, Willtek's obligation shall be limited to repairing, or at its option, replacing without charge, any assembly or component (except batteries) which in Willtek's sole opinion proves to be defective within the scope of the warranty. In the event Willtek is not able to modify, repair or replace nonconforming defective parts or components to a condition as warranted within a reasonable time after receipt thereof, the buyer shall receive credit in the amount of the original invoiced price of the product.

It is the buyer's responsibility to notify Willtek in writing of the defect or nonconformity within the warranty period and to return the affected product to Willtek's factory, designated service provider, or authorized service center within thirty (30) days after discovery of such defect or nonconformity. The buyer shall prepay shipping charges and insurance for products returned to Willtek or its designated service provider for warranty service. Willtek or its designated service provider shall pay costs for return of products to the buyer.

Willtek's obligation and the customer's sole remedy under this hardware warranty is limited to the repair or replacement, at Willtek's option, of the defective product. Willtek shall have no obligation to remedy any such defect if it can be shown: (a) that the product was altered, repaired, or reworked by any party other than Willtek without Willtek's written consent; (b) that such defects were the result of customer's improper storage, mishandling, abuse, or misuse of the product; (c) that such defects were the result of customer's use of the product in conjunction with equipment electronically or mechanically incompatible or of an inferior quality; or (d) that the defect was the result of damage by fire, explosion, power failure, or any act of nature.

The warranty described above is the buyer's sole and exclusive remedy and no other warranty, whether written or oral, expressed or implied by statute or course of dealing shall apply. Willtek specifically disclaims the implied warranties of merchantability and fitness for a particular purpose. No statement, representation, agreement, or understanding, oral or written, made by an agent, distributor, or employee of Willtek, which is not contained in the foregoing warranty will be binding upon Willtek, unless made in writing and executed by an authorized representative of Willtek. Under no circumstances shall Willtek be liable for any direct, indirect, special, incidental, or consequential damages, expenses, or losses, including loss of profits, based on contract, tort, or any other legal theory.

Equipment return instructions

Please contact your local service center for Willtek products via telephone or web site for return or reference authorization to accompany your equipment. For each piece of equipment returned for repair, attach a tag that includes the following information:

- Owner's name, address, and telephone number.
- Serial number, product type, and model.
- Warranty status. (If you are unsure of the warranty status of your instrument, include a copy of the invoice or delivery note.)
- Detailed description of the problem or service requested.
- Name and telephone number of the person to contact regarding questions about the repair.
- Return authorization (RA) number or reference number.

If possible, return the equipment using the original shipping container and material. Additional Willtek shipping containers are available from Willtek on request. If the original container is not available, the unit should be carefully packed so that it will not be damaged in transit. Willtek is not liable for any damage that may occur during shipping. The customer should clearly mark the Willtek-issued RA or reference number on the outside of the package and ship it prepaid and insured to Willtek.

Numerics

- 9100 Data Exchange Software 161–183
 - connecting PC and the instrument 164
 - copying configuration files 183
 - creating screen shots 171
 - directory structure 181
 - external coupling factor definition 178
 - external device compensation 178
 - file management 181
- File Manager 182
 - file types 181
 - license information 215
 - limit templates 174
 - loading a trace file on the PC 169
 - loading external coupling loss files 179
 - loading measurement results from the instrument 165
 - managing communication systems 179
 - predefined cable types 206
 - predefined channel power communication systems 204
 - printing results 169
 - saving results on the PC 169
 - working with measurement results 172
 - working with settings 180

A

- Accessories 5
- ACPR *see also* Adjacent channel power ratio

- Actual trace mode 56, 84
- Adjacent channel power ratio 65

- Application examples 201

- Attenuation 50, 81

- Average trace mode 56, 84

B

- Backspace key 21

- Battery status 13

C

- Calibration information 33

- Calibration Information menu 34

- Cent function key 19

- Center frequency 47

- Channel power 65

- level settings 80

- Channel power measurements

- managing communication systems 179

- Channel power mode 71–91

- adding trace B to trace A 87

- changing the occupied bandwidth 77

- changing the sweep time 80

- compensating gains and losses 82

- copying traces 88

- deleting traces 90

- external device compensation 82
- reading the channel power 77
- reference level 81
- selecting the trace mode 84
- setting up the trace 84
- storing and loading traces 89
- subtracting trace B from trace A 86
- trace detectors 87
- traces 84
- turning the second trace on and off 86
- viewing parameters 91
- working with communication systems 77

Clr Trc function key 19

Communication systems 77–80

- usage in channel power mode 77

Connectors 10

Copying traces 62, 88

Cursor keys 19

D

Date and time settings

- adjustment 36

DC in connector 10

Deleting traces 64, 90

Device name

- assigning a device name to the instrument 36

Direct printing 32

Display

- changing the brightness 35
- horizontal axis 14
- icons 14
- input field 17
- Marker field 17
- sections 13
- selecting the user interface colors 41
- softkey descriptions 17
- trace finder 17
- vertical axis 14

Display brightness 35

E

Enter keys

- Enter 20
- GHz/dBm 20
- kHz/dB μ V/m 20
- MHz/dB/ μ s 20

Entering numbers and text 22

Errors *see also* Troubleshooting

Escape key 20

External device compensation 51, 82

- defining and saving parameter files 178
- external coupling factor definition 178

F

Factory settings

restoring defaults for all modes 44

File Manager 182

Frequency

center frequency 47

span 47

Start and stop 47

Frequency menu

spectrum analysis 46

Frequency range 46

Frequency settings 46

Frequency step size 48

Front panel 12–23

entering numbers and text 22

function keys 18

keypad 18

usage 12

Full span 48

Function keys

Cent 19

Clr Trc 19

Hold/Run 18

Mkr 19

Mode 18

Param 18

Preset 18

RCL/Store 18, 43

Ref 19

Span 19

Function softkeys 21

G

Gains and losses

compensation 51, 82

General settings 32–43

calibration information 33

date and time 36

device name 36

display brightness 35

instrument IP address 38

instrument IP port 40

options 34

PC IP address 39

RS-232 port baud rate 37

serial number 32

software version number 33

user interface colors 41

warning and error beeps 36

General Settings menu 37

GHz/dBM enter key 20

H

Handling errors and problems *see also* Troubleshooting

Hardware attenuation 50, 81

Hold trace mode 56, 84

Hold/Run function key 18

I

Icons 14

Input

acoustical reaction 23

numbers and text 22

Input field 13, 17

Installing options 35

IP address configuration 38, 39

IP port 40

K

Keypad 18

Keys

Backspace key 21

cursor keys 19

enter keys 20

Escape key 20

function keys 18

numeric keys 20

Print key 20

softkeys 21

kHz/dB μ V/m enter key 20

L

LAN connector 12

Level

selecting unit for input and output 51, 82

Level settings 49, 80

Limit lines

usage 28

Limit templates 30, 174

changing limit lines 175

defining limits 175

loading a template 176

storing a template 176

transfer 176

M

Marker field 13, 17

Markers 25–28

disabling a marker 26

enabling a delta marker 26

enabling and moving a marker 25

working with 25–28

Max hold trace mode 56, 84

Measurement mode selection 24, 75

Measurement type 67

Menu softkeys 21

Menu structure 211

Menus

- Calibration Information 34
- General Settings 37
- Recall settings 43
- Settings Memory 43
- Setup Application Software Menu 96
- Spectrum Analysis Frequency menu 46
- System Information 33
- TCP/IP Configuration 41
- Trace Function menu 62, 63, 69
- Trace Memory 43
- Trigger menu 53, 54

MHz/dB/µs enter key 20

Min hold trace mode 56, 84

Mkr function key 19

Mode function key 18

Mode selection 24, 75

Modes

- channel power 71
- restoring factory settings for all modes 44
- spectrum analysis 45

N

Numeric keys 20

O

OBW *see also* Occupied bandwidth

Occupied bandwidth 65

Options 5, 34

- installing a new option 35

P

Param function key 18

Power switch 12

Predefined settings

- cable types 206
- channel power communication systems 203
- measurement settings 202

Preset function key 18

Print key 20

Printer configuration 41

Printing screens 32

R

RBW *see also* Resolution bandwidth

RCL/Store function key 18, 43

Recall settings menu 43

Ref function key 19

Reference level 50, 81

Resolution bandwidth 49

Restoring factory settings 44

Results area 13

RF in connector 10

RS-232 configuration 37
S
Safety warnings xvi
Scale 50, 82
SCPI commands 101–160
 application examples 194
 Calculate 146
 Display 142
 Format 153
 general 102
 Input 128
 Instrument 141
 MMemory 130
 programming examples 185
 Sense 114
 Service 154
 System 108
SCPI error messages 158
Selecting modes
 channel power 75
Selecting the measurement type 67
Serial (RS-232) connector 11
Serial number 32
Settings
 storing 43
 working with stored settings 43
Settings Memory menu 43
Setup Application Software Menu 96
Softkey descriptions 13, 17
Softkeys
 horizontal (menu) softkeys 21
 vertical (function) softkeys 21
Software license 215–216
Software update 95–100
 LAN 99
 serial 97
 setting a password for updates 96
Software version number 33
Span 47
Span function key 19
Special functions
 demodulating AM or FM signals 55
 limiting the number of measurements 55
Special spectrum analysis measurement functions 65–67
 adjacent channel power ratio 65
 channel power 65
 occupied bandwidth 65
 switching special measurement functions off 67
Spectrum analysis 45
Spectrum analysis mode 45–69

adding trace B to trace A 60
changing the vertical scale 50, 82
compensating gains and losses 51
copying traces 62
defining the number of measurements for averaging 61, 87
deleting traces 64
external device compensation 51
frequency range 46
frequency settings 46
full span 48
level settings 49
reference level 50
selecting step size for frequency input 48
selecting the trace mode 56
setting the attenuation 50, 81
setting up the trace 56
special functions 53
storing and loading traces 63
subtracting trace B from trace A 59
trace detector 61
traces 56
turning the second trace on and off 59
viewing parameters 69
Storing and loading traces 63, 89
Storing settings 43
Sweep time 49
Switching special measurement functions off 67
Switching the instrument on 12
SWT *see also* Sweep time
Symbols 14
System Information Menu 33
T
TCP/IP configuration 38, 39, 40
TCP/IP Configuration menu 41
Trace finder 17
Trace Function Menu 62, 63, 69
Trace Memory menu 43
Trace modes
 Actual 56, 84
 Average 56, 84
 Hold 56, 84
 Max hold 56, 84
 Min hold 56, 84
Traces
 adding trace B to trace A 60, 87
 copying traces 62, 88
 defining the number of measurements for averaging 61, 87
 deleting traces 64, 90
 selecting the detection method 61, 87
 storing and loading traces 63, 89

subtracting trace B from trace A 59, 86
trace detectors 61, 87
turning the second trace on and off 59, 86
Trigger menu 53, 54
Triggering
 external trigger 54
 video trigger 53
Troubleshooting 93–94
V
VBW *see also* Video bandwidth
Vertical scale 50, 82
Video bandwidth 49
Video Trigger 53
Viewing parameters 69, 91
W
Warranty information 217

Publication History

Revision	Comment
0303-100-A	First revision.
0312-210-A	Redesigned user interface; channel power measurements, AM/FM demodulation, video trigger, limit template, additional marker functions added.
0404-220-A	New features of software version 2.20; new chapters Spectrum Analysis and Channel Power Operation, Menu Structure, Typical Application Examples.
0406-221-A	Additional battery icons; IP address of PC not required; maximum input power level must not exceed 30 dBm at any attenuator setting.
0409-221-A	New chapters: Updating the Application Software and Troubleshooting.
0502-300-A	New features of software version 3.00: Factory Settings, Trace Function features, Calibration Information menu. System information menu descriptions modified according to feature enhancements. Description of delta marker handling modified according to feature enhancements. Measure menu modifications incorporated.
0601-401-A	New features of software version 4.01: Six markers, direct print mode, RMS detector. Several improvements on different menus.
0608-450-A	Minor corrections.

Willtek and its logo are trademarks of Willtek Communications GmbH. All other trademarks and registered trademarks are the property of their respective owners.

Specifications, terms and conditions are subject to change without notice.

© Copyright 2006 Willtek Communications GmbH. All rights reserved.

No part of this manual may be reproduced or transmitted in any form or by any means (printing, photocopying or any other method) without the express written permission of Willtek Communications GmbH.

Manual ident no. M 290 004
Manual version
0608-450-A
English

Willtek Communications GmbH
85737 Ismaning
Germany
Tel: +49 (0) 89 996 41-0
Fax: +49 (0) 89 996 41-440
info@willtek.com

Willtek Communications UK
Cheadle Hulme
United Kingdom
Tel: +44 (0) 161 486 3353
Fax: +44 (0) 161 486 3354
willtek.uk@willtek.com

Willtek Communications SARL
Roissy
France
Tel: +33 (0) 1 72 02 30 30
Fax: +33 (0) 1 49 38 01 06
willtek.fr@willtek.com

Willtek Communications Inc.
Parsippany
USA
Tel: +1 973 386 9696
Fax: +1 973 386 9191
willtek.cala@willtek.com
sales.us@willtek.com

Willtek Communications
Singapore
Asia Pacific
Tel: +65 943 63 766
willtek.ap@willtek.com

Willtek Communications Ltd.
Shanghai
China
Tel: +86 21 5835 8037/9
Fax: +86 21 5835 5238
willtek.cn@willtek.com

© Copyright 2006 Willtek
Communications GmbH. All rights
reserved.
Willtek Communications, Willtek
and its logo are trademarks of
Willtek Communications GmbH. All
other trademarks and registered
trademarks are the property of their
respective owners.

Note: Specifications, terms and con-
ditions are subject to change with-
out prior notice.

will'tek